
NAVAL POSTGRADUATE SCHOOL
Monterey, California

So_ STArt DTIC
ELECTE
DEC1 4 1992il

THESIS
NPSNET: JANUS-3D

Providing Three-Dimensional Displays
for a Traditional Combat Model

by

Jon C. Walter
and

Patrick T. Warren

September 1992

Thesis Advisor: Michael I. Zyda
Co-Advisor: David R. Pratt

Approved for public release; distribution is unlimited.

92-31368
11I IlimillllH 1111 92 12 14 041

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
li. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
NSCHEDULE Approved for public release;

2b. DECLASSIFICATION/DOWNGRAING SCdistribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

"§4. NAME OF 2EFFORMU¶G ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Computer 9cience ept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
NPSNET: JANUS-3D, Providing Three-Dimensional Displays for a Traditional Combat Model (U).

•iPERSONAL&ATHORS

Vnalter, on . andarren, Patrick T.
TeRs PORT ess FRM 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Ms~tyepr 's'fe'si s FROM 0890 TO09/92 1992, September 24 1 104
16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Virtual World, Three-Dimensional, Combat Modeling, C Programming

Language, Terrain Generation, Real Time, Networking, JANUS, NPSNET

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This work involves integrating the Army's existing combat modeling tool, JANUS, with the real time three-

dimensional graphics display offered by NPSNET. The development of a portable software package that can create
a three-dimensional virtual world from any existing JANUS terrain database is explained. In addition, a scripting tool
capable of rendering JANUS scenarios previously executed in the traditional two-dimensional model is discussed.
This replay capability allows the gamer/analyst the ability to watch the three-dimensional battle unfold from any
position on the battlefield. Lastly, the implementation of a real-time, networked link from the two-dimensional
JANUS model to NPSNET is detailed. This link involves an Ethernet connection from a Sun workstation, which
houses the two-dimensional model, to a Silicon Graphics workstation used for rendering the real-time three-
dimensional simulation. The methodology used and techniques developed are fully portable to any workstation with
X-windows capability and any graphics workstation equipped with the GL libraries.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
SUNCLASSIFIED/UNLIMITED [Q SAMEAS RPT. ODTIC USERS UNCLASSIFIED

FrfS2022b. TELEPHONFE (include Arean Code)2cr. ivcnae . yea (408) 64o- 2174

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

NPSNET: JANUS-3D
Providing Three-Dimensional Displays for a Traditional Combat Model

by

Jon Curtis Walter
Captain, United States Army

B. S. Engineering, United States Military Academy, 1983

and

Patrick Theron Warren
Captain, United States Army

B. S. Engineering, United States Military Academy, 1982

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

September 1992

Authors: 6
Jon Curtis Walter

Patric eprwJarr e

Approved By:
Michael J. W. hesis Advisor

VDavid .Aat,

Robert B. McGhee, Chairman,
Department of Computer Science

ABSTRACT

This work involves integrating the Army's existing combat modeling tool, JANUS,

with the real-time three-dimensional graphics display offered by NPSNET. The

development of a portable software package that can create a three-dimensional virtual

world from any existing JANUS terrain database is explained. In addition, a scripting tool

capable of rendering JANUS scenarios previously executed in the traditional two-

dimensional model is discussed. This replay capability allows the gamer/analyst the ability

to watch the three-dimensional battle unfold from any position on the battlefield. Lastly,

the implementation of a real-time, networked link from the two-dimensional JANUS model

to NPSNET is detailed. This link involves an Ethernet connection from a Sun workstation,

which houses the two-dimensional model, to a Silicon Graphics workstation used for

rendering the real-time three-dimensional simulation. The methodology used and

techniques developed are fully portable to any workstation with X-windows capability and

any graphics workstation equipped with the GL libraries.

CPT Walter concentrated his efforts in the areas of translations of JANUS(A) files to

NPSNET file foirmat and the networking of both JANUS(X) and NPSNET. CPT Warren's

primary focus was on generating three-dimensional terrain and the writing of JANUS(A)

scripts that NPSNET can read. Both CPT Walter and CPT Warren worked together to

create the tree and city canopies and other cultural features.

Acoug.t1(m For
* QNT!S •B

D

ii D I

TABLE OF CONTENTS

I. INTRODUCTION .. 1
A. BACKGROUND .. I
B. MOTIVATION ... 1
C. OBJECTIVES .. 2
D. CHAPTER SUM MARY ... 3

[I. JANUS(A): OVERVIEW .. 4
A. BACKGROUND ... 4
B. DESCRIPTION ... 4
C. HARDW ARE .. 5
D. PROGRAM SUMM ARY ... 5
E. DATA FILE MANAGEMENT AND CONTENT 6

1. JANUS(A) Initialization Files ... 7
a. Terrain Files .. 7
b. System Files .. 8
c. Force Files ... 9
d. Deployment Files ... 9

2. JANUS(A) Post-Processor Files ... 9
IIl. TW O-DIM ENSIONAL TERRAIN AND SCRIPTING .. 11

A. SGI FORMATTED JANUS(A) FILES .. 11
1. Initialization Files ... II

a. Terrain Files ... 11
b. System Files .. 12
c. Force Files .. 13
d. Deployment Files ... 13

2. SGI Formatted Post-processor Files ... 13
B. REPLAY ... 13

1. Two-Dimensional Map Generation .. 14
2. Two-Dimensional Scripting Capability ... 16

IV. NPSNET: INTEGRATION .. 19
A. BACKGROUND ... 19
B. HARDW ARE ... 19
C. DESCRIPTION ... 19
D. NPSNET VEHICLE MOVEMENT AND SIMULATION 20

1. Vehicle Models .. 20
2. Vehicle Data Structure ... 20
3. Vehicle Activity in NPSNET .. 22

E. GENERATION OF NPSNET ELEVATION FILES 23
1. JANUS(A): Coordinate System ... 23
2. NPSNET: Coordinate System ... 24

F. GENERATING MESH TERRAIN ... 25

iv

1. Creating the Binary Elevation file .. 25
2. Creating Mesh Terrain .. 25

G. GENERATION OF POLYGONIZED TERRAIN SKIN 26
1. Structure of Polygonized Terrain .. 26

a. Description of Grid Node ... 26
b. Polygonized Terrain Resolution .. 27
c. Description of a Terrain Quadtree .. 28

2. Generating Terrain Polygons ... 30
H. GENERATION OF NPSNET ROADS AND RIVERS 31
I. GENERATION OF NPSNET CITIES AND TREES 32

1. A Three-Dimensional Interpretation of Two-Dimensional Objects 32
2. Generation of City and Tree Canopies .. 33

a. Description of a Canopy .. 34
b. Determining the Canopy Height .. 35
c. Construction of Canopy Sides .. 35

3. Placement of Individual Trees and Buildings 38
a. Tree Placem ent .. 39
b. Building Placem ent .. 4...... 0
c. Equations for Determining Line-Polygon Intersections 41

V. NPSNET: GENERATION OF A THREE-DIMENSIONAL SCRIPT 43
A. THREE-DIMENSIONAL INFERENCE PROBLEM 43
B. A PPRO A CH .. 44
C. CREATING THE NPSNET SCRIPT FILE ... 44
D. INFERRED INFORMATION REQUIREMENTS 46
E. BASIC CALCULATIONS ... 46
F. THE HEURISTIC MODEL ... 48

1. Defensive Heuristic ... 48
2. Offensive Heuristic ... 49
3. Speed Smoothing Heuristic .. 49
4. Vehicle Orientation Heuristic ... 50
5. Weapon Orientation Heuristic .. 50

G. CALCULATION OF THE HEURISTICS IN CLIPS 50
VI. NETWORKING AND REAL TIME SIMULATION .. 53

A. JANUS(A) FOR THE UNIX OPERATING SYSTEM 53
1. Background ... 53
2. Contrasts Between the UNIX and VAX Versions of JANUS(A) 53
3. JANUS(X) Networking Capabilities ... 54
4. Network Message Format .. 56

a. JANUS(X) Message Format .. 56
b. NPSNET Message Format .. 58

B. NPSNET MESSAGES FROM JANUS .. 59
1. General Message Translation to NPSNET Format 59

a. Segment Number Conversion .. 59

b. Grid Coordinate Translation ... 59
c. Vehicle Model Identification .. 60
d. Elimination of Multiple Update Commands 61

2. NPSNET Initialization .. 62
3. Vehicle Movement Updates .. 64
4. Vehicle Shots .. 65
5. Artillery .. 65
6. Vehicle Destruction ... 66

VII. CONCLUSIONS AND RECOMMENDATIONS .. 67
A. CONCLUSIONS .. 67

1. Results .. 67
2. Applications .. 67

B. RECOMMENDATIONS .. 68
APPENDIX A: FILE TRANSLATION TECHNIQUES ... 69
APPENDIX B: USER'S GUIDE ... 72

A. INTRODUCTION .. 72
B. VAX TO UNIX FILE TRANSLATION .. 72

1. Translation of Terrain File .. 73
2. Recompilation .. 73
3. Translation of the System File ... 74
4. Translation of the Force File ... 74
5. Translation of the Deployment File .. 75
6. Translation of Post-processor Files .. 75

C. TERRAIN GENERATION ... 75
D. SCRIPT GENERATION .. 80
E. Operation of the Two-Dimensional REPLAY Program 81

1. Initialization and Start-Up Procedures .. 81
2. Program Manipulation .. 82

F. Operation of NPSNET: JANUS-3D ... 84
1. NPSNET: JANUS-3D Compilation .. 84
2. Operation of NPSNET: JANUS-3D in Script Mode 85
3. Operation of NPSNET: JANUS-3D in Real-Time Mode 87

LIST OF REFERENCES ... 91
INITIAL DISTRIBUTION LIST ... 93

vi

LIST OF FIGURES

Figure 1, Fulda Gap Being Rendered by Grey-Scaling Algorithm 15

Figure 2, Fulda Gap with Optional Terrain Features ... 16

Figure 3, Fulda Gap with Roads and Scripted Battle .. 18

Figure 4, Vehicle Information Data Structure ... 21

Figure 5, Description of JANUS Map Resolution ... 24

Figure 6, NPSNET: Coordinate System ... 25

Figure 7, Tri-Mesh Terrain Traversal Pattern .. 26

Figure 8, Basic Terrain Node ... 27

Figure 9, Quadtree: Terrain Illustration ... 29

Figure 10, Quadtree: Data Structure Illustration ... 29

Figure 11, Algorithm to Adjust Map Size According to Quadnode Requirements 30

Figure 12, Quadnode File Representation .. 31

Figure 13, Drawing of a Tri-Mesh Canopy .. 34

Figure 14, Order of Points for T-Mesh Canopy Top .. 36

Figure 15, Algorithm to Draw the Canopy T-Mesh .. 37

Figure 16, Cultural Object Description ... 38

Figure 17, Polygon Intersection Examples .. 39

Figure 18, Tree Placement Algorithm ... 40

Figure 19, Illustration of Line Segment Intersections .. 42

Figure 20, The Traditional JANUS(A) Hardware Setup ... 54

Figure 21, Networking Capabilities of JANUS(X) .. 55

Figure 22, JANUS(X) Network Message Example .. 58

Figure 23, Vehicle Type Identification ... 61

Figure 24, Sample Network Message Code ... 62

vii

Figure 25, NPSNET Initialization Message Function .. 64

Figure 26, Big-Endian vs. Little-Endian Architectures. 69

Figure 27, VAX Architecture, Four-Byte, Floating Point Format 70

Figure 28, Example Code for VAX to SGI Float Conversion 71

Figure 29, List of Directories Requiring Recompilation 74

Figure 30, Terrain Data Directories76

Figure 31, REPLAY Main Menu and Terrain Feature Sub-Menu 82

Figure 32, Replay Events Menu and Clock Speed Sub-Menu 83

Figure 33, NPSNET Main Menu and Script Sub-Menu .. 86

Figure 34, M akejanwin Shell Script ... 87

Figure 35, Example of Aliased Commands for JANUS(X) Initialization 88

Figure 36, Aliased Command to Run JANUS on Gravy 1 Terminal 88

Figure 37, Example of the RED SIDE JANUS(X) Screen ... 90

viii

ACKNOWLEDGMENT

As with all projects of this magnitude, there are many people who contributed to its

success.

First, and foremost, David R. Pratt must be praised for initially envisioning the project.

We would like to thank him for the continuing inspiration he provided throughout our

work. For his readily available and unceasing advise, expertise, and guidance, we are

extremely grateful.

Sincere gratitude goes to Dr. Michael J. Zyda for his timely critiques of our work. We

also thank him for creating a "graphics track", and providing us the necessary tools and

skills to complete our research.

Special thanks is owed to Rosalie Johnson for her invaluable advise and expertise

concerning the many software compatibility problems we encountered. Without her help

we would not have finished.

This project would never have gotten off the ground without the first-hand expertise

provided by Mr. Al Kellner of TRAC-WSMR. We appreciate his untiring and detailed

description of the inner workings of JANUS(A), during our "All Night Cram Session". But

most of all, for his inspiring challenge -- "it can't be done!".

Also, Mr. Jim Guyton, of the Rand Corporation, is thanked for his extreme patience

when pestered by our numerous phone calls concerning the UNIX version of JANUS. His

advice was invaluable.

A very warm and special thank you is duly owed to Captain David A. Nash. On many

occasions, too numerous to count, Dave provided insightful critiques, invaluable

debugging, and competent expertise on programming languages and hardware. This,

coupled with his genuine concern and fellowship, should have earned his name a place on

the front of this thesis.

Lastly, we thank our families, who demonstrated incredible patience, understanding,

and support, during our many long hours of work. We could not have done it without you!

ix

I. INTRODUCTION

A. BACKGROUND

In a time of shrinking budgets and growing demands, the key challenge for military

trainers is to find the most effective and efficient use of technology to supplement

traditional instruction. Motivated by this need, the Graphics and Video Laboratory of the

Department of Computer Science at the Naval Postgraduate School is currently conducting

research on building low-cost, three-dimensional visual simulators on commercially

available graphics workstations. The goal of these simulators is the generation of three-

dimensional views of terrain, cultural features and vehicles using readily available

databases. Current visual simulation efforts are on the NPSNET system, a networked visual

simulator that utilizes SIMNET databases and SIMNET networking formats [ZYDA 911

[ZYDA 91a] [ZYDA 92] [PRAT 921. One of the most recent research developments

underway includes the integration of NPSNET with the U. S. Army's two-dimensional

combat model, JANUS(A).

B. MOTIVATION

In 1991, the U. S. Army Training and Doctrine Command selected JANUS(A) as the

simulation software standard for training at company and platoon levels, using the battalion

commander as the senior trainer. It is also used in a seminar role by the Command and

General Staff College to train new battalion and brigade commanders on the principles of

synchronized combined arms operations [KANA 91]. JANUS(A) is fielded throughout the

world and, because of its ability to accurately model complex combat scenarios, is widely

used by trainers and analysts in numerous applications which include combat training,

studies of combat operations, combat development, testing of new equipment, and research

and development.

Despite its great success and huge popularity as a combat development and testing

tool, JANUS(A) analysts and developers realized the need for a three-dimensional view of

the battlefield to validate their results. An example of this is the new system testing of the

M 1 A2 main battle tank at Fort Hunter Liggett, California. As part of this testing, the U. S.

Army TRADOC Analysis Command, Monterey, used JANUS(A) as a tool to model the

operational testing of the M I A2 tank, before it was actually tested on the ground. A three-

dimensional capability would help validate this data by verifying events, such as tank

positions, direct fire engagements, and line of sights between weapon systems.

Also, because of past virtual reality successes, such as SIMNET, users knew that a

three-dimensional view, in support of JANUS(A) exercises, would greatly enhance training

simulations. Almost as good as being on the actual terrain, a three-dimensional world

would give the gamer/analyst the ability to watch the battle unfold from any position on the

battlefield. In addition to standard scenarios, this ability could be used, in conjunction with

JANUS(A), for three-dimensional 'after-action reviews' at Combat Training Centers, such

as the National Training Center, Fort Irwin, California. Likewise, previously fought battles,

such as the famous 'Battle of 73 Easting', could be reenacted on JANUS(A), and refought

in the three-dimensional simulation, allowing for several 'what-if' conditions.

C. OBJECTIVES

The primary objective of this work is to produce a working three-dimensional virtual

world that is fully integrated with JANUS(A). To accomplish this objective, the goals were

threefold: (1) create a three-dimensional virtual world from any existing JANUS(A) terrain

database, (2) write a scripting tool capable of rendering JANUS(A) scenarios on this three-

dimensional terrain that were previously executed in the traditional two-dimensional

model, and (3) implement a real-time, network link from the two-dimensional JANUS(A)

model to NPSNET.

The methodology consisted of first developing a two-dimensional model to validate

both the terrain and the script data derived from JANUS(A), followed by the integration of

JANUS(A) with a fully functioning three-dimensional viewing capability.

D. CHAPTER SUMMARY

Chapter 1I gives an overview of the JANUS(A) system, including the background of

its development, a brief description of the model, and the hardware necessary to run it. In

addition, this chapter discusses the many different programs that are included in

JANUS(A), followed by a description of the different data files, and their relationship with

these programs.

The different hardware systems caused a data file compatibility problem, thus

JANUS(A) files were converted to a format compatible with NPSNET. Chapter III

describes the file management system developed for these converted files. It also discusses

the two-dimensional replay model which was developed to validate both the converted

terrain model and the accuracy of the conversion utilities.

Chapter IV provides an overview of NPSNET and the methods used to integrate

NPSNET with the JANUS(A) combat model. This includes a discussion of the creation of

three-dimensional terrain, cities, and trees.

One problem, when integrating the two-dimensional model with NPSNET, was that

JANUS(A) does not produce all of the information necessary to define what a vehicle is

actually doing every moment of the game. Chapter V describes, in detail, the expert system

used to convert two-dimensional post-processor scripts to a three-dimensional script.

Chapter VI describes the implementation of a real-time, network link from the

recently developed Sun-based version of JANUS(A) to NPSNET.

Two appendices are provided. Appendix A describes, in detail, the method used to

translate VAX formatted files to IEEE format. Appendix B is a users guide for the JANUS-

3D program.

~• • m m m m 3

IL JANUS(Aj: OVERVIEW

A. BACKGROUND

JANUS, named for the ancient Roman god who guards portals, is an interactive,

computer based, war-gaming simulation of combat operations conducted at the brigade and

lower level in the United States Army [JANU 86]. The original JANUS simulation began

in the late 1970's at the Lawrence Livermore National Laboratory (LLNL) to model

nuclear effects, and gained considerable reputation for its innovative use of graphical user

interfaces [KANA 91]. The U. S. Army TRADOC Analysis Command, White Sands

Missile Range, New Mexico (TRAC-WSMR), acquired this prototype from LLNL as a

result of the JANUS Acquisition and Development Project, directed by the U. S. Army

Training and Doctrine Command (TRADOC) in 1980 [JANU 86]. In 1983, TRAC-WSMR

adopted JANUS and further developed it as a high resolution simulation to support analysis

for Army combat developments.

The original version, developed at LLNL is known as JANUS(L), while the model

developed by TRAC-WSMR is known as JANUS(T). Subsequent to their development,

both of these models gained in popularity and employment by a varied number of users,

which led to a wide proliferation of different versions of both models. The JANUS(Army)

Program began in 1989 to solve the standardization problem and to field a single version,

JANUS(A), for all Army users. Today, JANUS(A) is developed, maintained, and

distributed by TRAC-WSMR, and is fielded throughout the world as a tool for both trainers

and analysts in research and development, testing, and combat development.

B. DESCRIPTION

JANUS(A) is a "two-sided, interactive, closed, stochastic, ground combat simulation"

[JANU 91]. It is termed 'two-sided' because it allows the simulation of two opposing

forces. These two forces, the Blue force and the Red force, are simultaneously directed and

controlled on separate monitors by two different sets of players. Each monitor displays only

the vehicles pertaining to its side, plus the opposing vehicles which are directly observed

4

by its vehicles. Therefore, the model is classified 'closed' because the friendly force player

does not know the complete disposition of the opposing forces. The model is 'interactive'

because each player monitors, directs, reacts to, and redirects all key actions of the

simulated units under his control. Once a scenario is started, certain events in the game,

such as direct fires and artillery impacts, are 'stochastically' modelled, which means that

they act according to the laws of probability, and thus are different for every scenario run.

The principal modeling focus in JANUS(A) is on military systems that participate in

maneuver and artillery operations on land, thus the term 'ground combat simulation'.

C. HARDWARE

JANUS(A) currently runs on any Digital Equipment Corporation (DEC) VAX family

of computer systems utilizing the standard VMS operating system. A minimal hardware

configuration (MV3 1 OOE with 12MB memory and four Tektronix 4225 workstations) costs

about $85,000 [JANU 91]. In August 1991, the Army directed that JANUS(A) be fielded

on an "open system". Since then, it has been successfully demonstrated on UNIX based X-

workstations, and has been benchmarked as an open system for August 1992 [KANA 91].

D. PROGRAM SUMMARY

JANUS(A) is composed entirely of Army-developed algorithms and data to model

combat processes. The multitude of programs which belong to JANUS(A) consist of

approximately 200,000 lines of code written entirely in VAX- Il FORTRAN, a structured

Digital Equipment Corporation (DEC) extension of ANSI standard FORTRAN-77 [JANU

91]. In addition to these combat simulation programs, JANUS(A) also has eleven utility

programs to facilitate the creation, running, and after-action analysis of a specific scenario.

These programs are outlined in Table 1.

5

TABLE 1: JANUS(A) PROGRAMS AND SUMMARY DESCRIPTION

Program Description

TRNFLTR Creates terrain files suitable for use by JANUS(A), using any TRAC-
WSMR DMA terrain database as input

TED Allows interactive editing of JANUS(A) terrain files, and the building of
JANUS(A) display map data files

SYMBOLS Allows interactive design of graphical symbols to represent each type of
system being modeled

CSDATA Interactively maintains the large permanent JANUS(A) system perfor-
mance database

FORCE Allows interactive specification of the number of each type of system
comprising each force in a particular scenario

MERGE Allows a scenario to be built from the Blue Forces of one scenario, and
the Red Forces of another scenario

VFYSCEN Reviews all system and force data for a particular scenario, and reports
errors or inconsistencies

GRAFVFY Graphically displays each weapon/system capability and sensor capabil-
ity against opposing force systems

INITSCEN Initializes an existing scenario for use as a new scenario, or creates a sce-
nario from scratch

POSTP Provides a history and reports of nearly every event which occur during
a JANUS(A) run

JAAWS Provides a quick graphical review of force movement, detections, and
attrition which occurred during a JANUS run

E. DATA FILE MANAGEMENT AND CONTENT

Every program included in JANUS(A) is dependent on the reading and/or writing of

many data files. Therefore, fully integrating JANUS(A) with the three-dimensional

capabilities of NPSNET involves a complete understanding of the content of the various

files, and the read/write relationship between the data files and the different programs.

6

Below is a description of the organization and content of the JANUS data files used to set

up the system (initialization files), and the JANUS post-processor files used to run the

scripted scenarios.

1. JANUS(A) Initialization Files

In the combat model JANUS, the initial state of each scenario is recorded in the

filesforce###.dat, system###.dat, dploy###.dat and terain###.dat. For the first three files,

'###' is a three digit number from 001-999 which refers to a specific scenario. In the terrain

file, '###' is a three digit number from 100-999 which corresponds to the actual digitized

terrain file used in the model. These files include information concerning the two-

dimensional map, the types and initial locations of vehicles and other data pertaining to the

characteristics of the vehicles. The JANUS(A) data files are all stored in VAX binary

format. The following is a brief description of each of the JANUS(A) file formats.

a. Terrain Files

The file terain###.dat, generated by the programs 'TED' and 'TRNFLTR',

contains all of the physical terrain information that JANUS requires to represent the two-

dimensional map. The terrain resolution is variable, with the standards being 25, 50, 100,

and 200 meter terrain grids. The header information in each of the binary terrain files

consists of the following specific information:

(1) The X and Y UTM coordinates of the lower left comer of the map.

(2) The width and height of the map in kilometers.

(3) The number of grid cells in the X and Y direction.

(4) Movement factors for urban and vegetated areas.

(5) Vegetation and urban heights and probability of line of sights.

In addition, each terrain file contains an array of river nodes followed by an

array of road nodes. Each node in the array contains the X and Y coordinate of the node

followed by a boolean. If the boolean is positive the next node belongs to the present node.

7

If the boolean is zero, the next node belongs to a new road or river. And, if the boolean is

negative, it signifies the last node in the array.

The largest portion of the terrain file is the data stored for each terrain grid

cell, which includes:

(1) Elevation of the grid cell

(2) Density information

(3) City or tree present flag, and its respective height

(4) Trafficability and terrain roughness information

(5) River present flag

(6) Obstacle present flag

(7) Flags representing smoke, HE, chemical, radiation, or fire present

b. System Files

JANUS(A) has a very large database which contains the performance data

for every possible system, weapon, sensor, mine, barrier, and other entities that can be

simulated by the model. Likewise, new combat systems or proposed systems can be added

to the database. Because this database is so large, there are limits on the number of different

systems which can be modeled at one time. Thus, when a new scenario is being built, the

system types of the units being represented are copied from this database to a smaller file

to support the scenario. This smaller file is the system###.dat file, and is created by running

the utility program 'FORCE'.

The data comprising each system type is enormous, but includes attributes/

characteristics such as:

(1) Names and documentation for each system

(2) Road speed

(3) List of direct fire weapons and sensors attached

(4) Vulnerability to artillery, direct fire, and mines

(5) Probability of hit vs. range by posture, aspect, and motion

(6) Probability of kill given a hit vs. range by posture and aspect

[JANU 91].

8

c. Force Files

In addition to writing the new scenario database, system###.dat, the

'FORCE' program also creates the data file force###.dat. This file, which is unique for

each different type of scenario being modelled, contains the specific force structures of the

friendly and opposing units. In other words, the units are divided by side/monitor and

further subdivided by task forces. Each side in a JANUS scenario can accommodate 600

separate vehicles for a total of 1200 vehicles modelled. The specific data elements in the

force file are:

(1) System type, unit side, and task force.

(2) Number of elements per individual system.

(3) Number of mines, smoke grenades, mine clearing equipment, etc.

d Deployment Files

The data file dploy###.dat contains all of the initialization criteria for each

unit which has been designated in theforce###.dat file. The program 'INITSCEN' creates

this deployment file, and must be run each time a scenario is changed from an existing

scenario or created from scratch. The specific items contained in the deployment file are:

(1) Unit positions and movement mutes.

(2) Mount status

(3) Planned direct fire and artillery missions

(4) Barrier locations.

2. JANUS(A) Post-Processor Files

All significant events which occur during a JANUS(A) run are recorded in disk

files, called post-processor files, which can be printed in a human readable format to the

screen. The program 'POSTP' is available to the JANUS(A) user to produce these

historical reports, which are used to analyze certain aspects of the battle. Since one of the

goals was to produce a three-dimensional playback capability of a JANUS(A) scenario,

these files were significantly important to understand. There are nine total post-processor

9

files, but only five of them, ppmove###.dat, ppfirs###.dat, pparty###.dat. ppkils###.dat,

and ppmins###.dat, were actually needed to create a script capability. In all five files, the

number '###' refers to the specific scenario. Like the initialization files, these files are

stored in VAX binary format. The following is a brief description of each:

TABLE 2: JANUS(A) POST-PROCESSOR FILES AND DESCRIPTION

PP File Description

PPMOVE Sequential list, by game time, of the location of every unit, by vehicle
number and side.

PPFIRS Sequential list, by game time, of the location and speed of the firer and
the target.

PPARTY Sequential list, by game time, of the location of the firer, type of volley,
number of rounds fired, and location of impact.

PPKILS Sequential list, by game time, of the location of the firer and the victim
and the kill type.

PPMINS A record of all minefields, fascams, and gems activated during the run.
Includes the location, type, size, number of mines, etc.

10

III. TWO-DIMENSIONAL TERRAIN AND SCRIPTING

The first step in developing a realistic three-dimensional virtual world and a

representative scripting capability for previously run scenarios was to build a two-

dimensional prototype. This system, run entirely on an SG1/IRIS, was extremely effective

in testing the validity of the converted terrain model and the accuracy of the conversion

utilities developed to transform the JANUS(A) initialization and post-processor files into a

format usable by NPSNET. The different hardware systems caused a significant

compatibility problem. Appendix A discusses the methods used to convert VAX formatted

files to a format compatible with the Silicon Graphics Computers. This chapter describes

the file management system developed for the converted files. It also discusses the two-

dimensional replay model which was developed.

A. SGI FORMATTED JANUS(A) FILES

This section briefly describes the format and content of the converted JANUS(A)

initialization and post-processor files. For simplicity in reading and validating the data, all

of the VAX to SGI converted data are stored as text files.

1. Initialization Files

As stated in Chapter II, the initial state of each scenario is recorded in the files

force###.dat, system###.dat, dploy###.dat and terain###.dat. These files include

information concerning the two-dimensional map, the types and initial locations of

vehicles, and other data pertaining to the characteristics of the vehicles.

a. Terrain Files

The conversion program for the terrain files is called readtrrn.c. It takes, as

input, the three digit number '###' signifying the digitized map used in the model. The

corresponding JANUS(A) terrain file, terain###.dat, is first decoded and then written into

three different text files corresponding to the grid cell data, the river array data, and the road

array data. The grid cell data is stored in the file ###.ele, and begins with a header

11

containing the lower left X and Y coordinates, the number of grid cells, and the map

resolution. The remainder of the grid cell data is formatted as shown in the table below.

TABLE 3: CONVERTED GRID CELL DATA FILE FORMAT

X Cell Y Cell Elevation Density City/Tree ... HE

0 0 324.0 5 0 ... 0

1 0 332.0 7 1 ... 0

120 120 333.0 3 0 ... 0

The river array and road array data are contained in ###.riv and ###.road

respectively. They each contain a line entry for the X coordinate of a node, followed by the

Y coordinate, and lastly a boolean representing (1) the continuation of a river/road, (2) the

end of a river/road, or (3) the end of all rivers/roads.

b. System Files

The conversion program for the system files is called readsysfiles.c. It takes,

as input, the three digit number '###' signifying the scenario number being used in the

model. As mentioned in Chapter II, this system file is enormous and contains almost every

conceivable bit of performance data available for any weapon system. Since the system

only simulates what JANUS(A) has already modeled in a scenario, most of the information

in this system file is not needed. Thus, after decoding system###.dat, information is written

to only three different text files. The first, sysforce.dat, contains all of the information

needed to match the proper icon symbol to the appropriate system. The next, name.dat, is

a table matching the different system numbers to the actual assigned JANUS system name.

And the last, cloud.dat, contains the cloud ceiling, wind direction and speed, and the cloud

coefficients.

12

c. Force Files

Once the system file has been converted, the conversion program for the

force file, readforcefile.c can be run. Like the others, it accepts the three digit number '###'

signifying the scenario number being used in the model. For the same reasons as the system

file, much of the data written in force###.dat is not needed for the simulation. After

decoding the force file, information is written to three different text files. The first,

sysnames.dat, matches a unique vehicle to its specific system number and text name. The

second,force.data, matches a unique vehicle to its side, vehicle number, vehicle type, task

force, and number of subordinate elements. The last file, icontable.dat, matches a unique

vehicle to its appropriate two-dimensional JANUS(A) icon symbol.

di. Deployment Files

The conversion program for the deployment file is readdeploy.c. It also

accepts the three digit number '###' signifying the scenario number being used in the

model. After decoding the deployment file, dploy###.dat, one text file is written. This file,

initunit.dat, simply contains the initial positions and orientations for every vehicle in the

scenario.

2. SGI Formatted Post-processor Files

The conversion program for the post-processor files is readppfiles.c. It accepts

the three digit number, '###', matching the scenario which has previously been run and

saved. It sequentially decodes all five post-processor files, then writes all of the data from

each into their respective text files. For example, the JANUS(A) post-processor file,

ppmove###.dat, would be transformed from VAX to SGI format, then written into the text

file ppmove.dat.

B. REPLAY

The next step, after (1) converting and formatting the JANUS(A) data files from VAX

to IEEE and (2) arranging them in the new file management system, was to test the display

13

of the two-dimensional terrain, vegetation, and cultural features on the prototype system.

In addition to the map display, the validity of the initialization and post-processor files were

tested by creating a two-dimensional scripting capability. This section discusses this two-

dimensional terrain and scripting program, 'REPLAY'.

1. Two-Dimensional Map Generation

All of the information needed for the creation of the two-dimensional map,

except for the roads and rivers, is found in the converted file ###.ele (see table 3). The most

important part of this file is the elevation data that is provided for each grid cell. As

mentioned in Chapter II , there are several different resolutions available for any particular

piece of terrain. The elevations given for a specific grid cell correspond directly to the

resolution of the map. For example, if a map had a resolution of 100 meters, each elevation

would correspond to a 100 x 100 meter section of ground. To accurately portray this terrain,

the elevations are represented by coloring each one a brighter shade of grey from the

minimum to the maximum elevation. Since there are 255 different available shades of grey,

the proper grey-scale is calculated by using the ratio shown in Equation 3.1 [PRAT 90].

ELEVATION - ELEVATIONtIN

COLOR = (ELEVATIONMIN ÷ 255 x (ELEVATIONMAx - ELEVATIONmINt) (Eq 3.1)

Using this equation resulted in an esthetic view and accurate representation of the

two-dimensional map. An example of a 100 meter resolution, 12 x 12 kilometer section of

terrain being rendered by the program, 'REPLAY', is shown in Figure 1.

14

Figure 1: Fulda Gap Being Rendered by Grey-Scaling Algorithm.

As discussed above, the ###.ele file contains much more than just elevations. All

of these pieces of information are displayed to the screen in a similar manner as the grey-

scale map. The cities are displayed in shades of dark grey, and the vegetation is displayed

in shades of green, each corresponding to their appropriate density values. Yet, unlike the

grey-scale map, which is permanently displayed on the screen, the remainder of the terrain

and cultural features is displayed by a pop-up menu. These features are then be rendered or

hidden as needed.

The road and river data, contained in their own separate files, is simply a

collection of connected nodes. These features are also rendered through a pop-up menu,

which simply connects the nodes with black lines for roads and blue lines for rivers. An

example of cities, vegetation, roads, and rivers is shown in Figure 2. It is being displayed

on the same grey-scaled map featured in Figure 1.

15

Figure 2: Fulda Gap with Optional Terrain Features.

2. Two-Dimensional Scripting Capability

With the terrain file verified, the next step was to produce a representative two-

dimensional script of a scenario which had been previously run on the traditional

JANUS(A) model. The appropriate vehicles are successfully matched to their side (red or

blue) and to their particular icon symbol by using the converted force and system files.

Then, the converted deployment file is used to properly render each vehicle, according to

its two-dimensional icon, at the appropriate initial position. This validated the conversion

and format utilities for the initialization files.

Next, the playback capability was created by using the data contained in the five

converted post-processor files. Each file's information was loaded into separate arrays

based on the clock time, in seconds, that the event occurred. Like the terrain features, a pop-

16

up menu is used to start the 'replay' action. When the playback option is activated, the

program sets the elapsed time to zero. Then, as the elapsed time progresses, each of the

array's clock times are checked against it. If an event matches the system clock, it is

activated.

Minefields are drawn as rectangles, with the proper length, width, and

orientation. Movement events are shown by simply moving the two-dimensional icon to its

next position. Direct fire events are drawn with straight lines, with blue representing

friendly fire and red representing enemy fire. Indirect fire events are depicted as circles.

The edges of the circles are colored according to the side (red or bhue), and the interior of

the circle is painted black for high explosive or white for smoke. Smoke rounds remain on

the map until their determined dissipation time. Destroyed vehicles are changed to a green

color, and remain on the map at that position. An example of the playback program is

shown in Figure 3.

17

Figure 3: Fulda Gap with Roads and Scripted Battle.

The 'REPLAY' program proves that the conversion programs and display

ilgorithms for the post-processor files are identical in every detail to the original scenario

run on the actual JANUS(A) model. This confirmed, the next step was integrating

JANUS(A) with the three-dimensional model NPSNET, as discussed in the next chapter.

18

IV. NPSNET: INTEGRATION

This chapter provides an overview of NPSNET and the methods used to integrate

NPSNET with the JANUS(A) combat model. Topics discussed are the functions, programs

and utilities required to create three-dimensional terrain skin for the JANUS(A) model

within the NPSNET system. The procedures necessary to generate the triangular-mesh and

the polygonized three-dimensional terrain, together with the methods used to create cities,

trees and tree canopies are discussed. Also an algorithm to insure that trees and buildings

are not drawn on rivers and roads is presented.

A. BACKGROUND

The Naval Postgraduate School's Computer Science Department created a system to

render three-dimensional, real time simulations of military vehicles and terrain databases

known as NPS Networked Vehicle Simulator (NPSNET). Specific attributes of the system

include creating a three-dimensional, real time, virtual world at a cost of well under

$100,000 [ZYDA 921. Furthermore, it possesses the ability for quick adaptation with

applications involving other modeling systems. In particular this chapter refers to the

ongoing development of applications and interfaces for NPSNET with the JANUS(A)

combat modeling system.

B. HARDWARE

NPSNET currently runs on a Silicon Graphics Incorporated (SGI), IRIS/4D family of

computer systems utilizing the IRIX (UNIX based) operating system [SGI 91]. The entry

level hardware for this model is the SGI Indigo-Elan with 16MB of memory and 100MB

of available disk space. The cost for the minimal system is approximately $27,000.

C. DESCRIPTION

NPSNET utilizes two techniques to render terrain, using either triangular-mesh or

discrete polygons as basic building blocks. The triangular-mesh terrain provides an

efficient and simple terrain skin for the virtual world, but currently does not allow roads

19

and rivers to be drawn without significant tearing. In order to realistically provide the

ability to render roads and rivers, NPSNET instead utilizes the discrete polygon

(polygonized) terrain model [PRAT 921. All objects (such as trees, vehicles and buildings)

are rendered using a system known as NPSOFF [ZYDA 91 a]. These stationary objects and

polygonized terrain data are stored in files indexed by coordinates which match their

corresponding terrain node (Terrain nodes are discussed in Section IV.G.). Moving objects

are stored in an array assigned to each terrain node. Their positions are updated each time

the graphics loop is executed [MACK 91].

NPSNET currently provides three modes of combat modeling. First, the model can

be played in a networked, multi-user mode. In this mode, one or more players can chose

and maneuver any vehicle in the three-dimensional virtual world. They can decide to fight

with or against one another over the network. Additionally, a player can choose to fight a

set of semi-automated forces. Players can view the world from the perspective of the

vehicle commander or from an observer controller vehicle. The second modeling mode

NPSNET uses is a script. With this method, the user can prepare scripted scenarios of

combat operations and view the results in three-dimensions. The last mode includes

receiving inputs over an Ethernet network from other three-dimensional combat models

such as SIMNET. In this mode, NPSNET can fully interact with the other combat model.

D. NPSNET VEHICLE MOVEMENT AND SIMULATION

1. Vehicle Models

NPSNET provides an assortment of U.S. and foreign weapons system models.

Currently, vehicle models range from U.S. MlAl tanks and A-10 jet aircraft to Soviet

made T72 tanks and BMPs. All of these vehicles are formatted and rendered using the

NPSOFF system [ZYDA 91a].

2. Vehicle Data Structure

All information concerning the disposition of vehicles is stored in a data

structure named vehpostype. This structure contains the information listed in Figure 4.

20

int vehnum; /*The vehicle identification number in NPSNET /
int vehtype; /*Type of vehicle model, an index into vehtypearray 'I
int control; P Who is controlling it(i.e. script, network, etc.h/
int undriven control; P Who controls it when it's not the driven vehicle? */
int gunfire; /* Did it shoot in the last frame */
int alive; /* Vehicle is alive or dead */
float pos[3); /* Vehicle position in space (i.e. 3D grid coordinates)*/
float direction, /* X-Z plane orientation of veh in radians */

viewdirection, P X-Z plane orientation of the drivers view in radians */
elev, /* Vehicles meters above ground (aircraft and observer) */
gunelev, P Quadrant elevation of tube in degrees*/
speed, /* Meters per second *
roll, P Degrees*/
pitch; r Degrees*/

int jan type; /* Specifies janus symbol in 2d map */
int behavior; /* What type of behavior it is exhibiting*/
int round; r* Number rounds of ammunition vehicle has left*/
int deadframes; r Number of frames has it been dead*/
long deadtime; r Time vehicle has been dead*/
fot coil interval; /* Minimum safe passing distance*/
float eyel3j, /* Location of the viewers eye in world coordinates.*/

Iookatpt[3], P Location of the point the viewer is looking at.*/
lookfrompt[3]; /* Where viewer is looking when not in vehicle*/

float gas; /* Fuel remaining in vehicle*/

Figure 4: Vehicle Information Data Structure

Every vehicle present in a simulation is described with one of these vehpostype

data structures, which is stored in an array named veharray[MAXNUMVElICLES].

MAXNUMVEHICLES is a variable indicating the maximum number of vehicles that the

simulation will allow -- currently 500.

The following discussion refers to the variables listed in Figure 4. The index for

a particular vehicle in veharray is identical to vehnum for the vehicle. At initialization, each

vehicle that is input into the simulation is assigned a sequential vehnum beginning with the

number one. The observer controller vehicle has the number zero assigned as its vehnwn.

It is important to note that NPSNET uses a one dimensional array to store vehicle

information. This requires only a single index to identify a unique vehicle in a simulation.

JANUS(A), on the other hand, stores all of its vehicle information in a two-dimensional

array, thus requiring two indices to identify a vehicle. A cross indexing routine, to allow

the proper identification of a vehicle between the two systems, is discussed in Chapter V.

21

Vehtype is a variable that indicates which of the NPSOFF vehicle models is

rendered for the particular vehicle. The control variable indicates whether or not the

operator of the simulation is currently driving, thus controlling, the vehicle. If a vehicle is

not being controlled by the operator, it is assigned the variable, undrivencontrol. The modes

offered for an undriven vehicle include receiving commands from a script, receiving

commands from the network, receiving commands through the semi-automated force

system, or simply continuing at the same speed and direction that it currently has until the

operator of the simulation changes it.

The variables that are of particular importance to the current disposition of a

vehicle in the three-dimensional world are pos[3], viewdirection, direction, elev and speed.

The variable, pos[31, is an array containing the grid coordinates for a vehicle. Viewdirection

stores the angle of the turret (or angle of operators view) based on a coordinate system local

to the vehicle itself. (Note: The X axis is considered the base axis from which all

measurements begin and the positive direction of measure is clockwise.) The variable,

direction, is the angle of the base of a vehicle with respect to the NPSNET terrain

coordinate system. The elev variable indicates the number of meters a vehicle is above the

terrain. Only aircraft and the observer controller vehicle can have an elev value greater than

zero. The speed variable indicates the current speed of a vehicle, and is measured in meters

per second in the NPSNET simulation.

The other variables that are listed in the vehpostype are important to the

functioning of the NPSNET simulation but are not relevant to the translation of JANUS(A)

data. Therefore, they will not be discussed.

3. Vehicle Activity in NPSNET

Every time the graphics loop is executed, each element in the veharray is

updated. Based on the current speed and direction recorded for a vehicle, the new position

is calculated and stored in the pos[31 variable. The vehicle is then rendered at this new

location, with the orientation of the vehicle and turret prescribed by the direction and

22

viewdirection variables. These orientations can be changed by inputs from the user at the keyboard

or with the space ball [MACK 91].

Other activities such as gunfire, or the destruction of a vehicle, are stored in the veharray

for a vehicle. When the graphics loop updates the vehicle, it will render the appropriate response as

indicated by the variables in the array. Activities of a very short duration, such as gunfire, are reset

to no gunfire after the vehicle array is updated.

E. GENERATION OF NPSNET ELEVATION FILES

1. JANUS(A): Coordinate System.

NPSNET uses the JANUS(A) terrain database to construct the three-dimensional terrain.

The JANUS(A) terrain database is merely a collection of grid coordinates with an elevation assigned

to each coordinate. In order to store these elevations in a sequential file format, JANUS(A) divided

the terrain into a grid. The spacing between the horizontal and vertical lines is known as the

resolution value and is labeled "GAP" throughout the code. Each intersection is labeled by the

cartesian coordinates of the horizontal and vertical line that make up the intersection. The elevation,

tree or city present flag, and its respective height factor are recorded for each of these intersections.

These grid intersections will be referred to as "checkpoints" in the remainder of this document.

JANUS(A) references the cartesian coordinates for each checkpoint using its UTM coordinate as

indicated in Figure 5. These UTM coordinates are translated to a local coordinate system where the

lower-left hand comer of the map has the coordinates (0, 0) using Equation 4.1 and Equation 4.2

XJANUS_locali = (XUTMlower-left - XJANUS i) (Eq 4.1)

YJANUS local, = YUTMlower.left - YJANUSj (Eq 4.2)

23

Cartesian -
(4, 3)

(658, 2945)
58, 045

(75
, 3 45)100

m eters
UUTM (0,0) (0,2)Figure

5: Description
of JANUS

Map Resolution

Unlike
JANUS(A),

NPSNET
utilizes

a local coordinate
system

where
the upper-

left hand corner
of the map is labeled

(0, 0). Therefore,
to allow

NPSNET
the ability

to

accurately
reference

the JANUS
terrain

database,
each set of JANUS(A)

coordinates
are

translated
to reflect

the NPSNET
system.

Since
the x coordinate

in the NPSNET
coordinate

system
is the same

as the x coordinate
for the JANUS(A)

local
coordinate

system,
no

further
translation

of the x coordinate
is required.

But because
they coordinates

for the two

systems
are not the same

each local JANUS(A)
y coordinate

is translated
to match

the

NPS NET coordinate
system.

This translation
is accomplished

by subtracting
each local

JANUS(A)
y coordinate

from the total height
of the map as written

in Equation
4.3. (The

z coordinate
in three-dimensions

is equivalent
to the two-dimensional

y coordinate.
The

remainder
of the document

will use the z coordinate
when

referencing
the two-dimensional

Scoordinate.)

ZNPSNETi

=
Map

Height

-

oJANUS

lcalt

(Eq
4.3)"

As
explained

in
Chapter

II(,
these

translated

coordinates,

along
with

the

elevations,

road
present,

river
present,

city
or

tree
present,

micro-terrain

roughness,

and

trafficability

corridors

for
each

checkpoint

are
stored

in the
file

"###.ele".

24

syste
is,,i then~ l sma nnmeu

mmn
mnas

unheuord nt e fo
hmumS

o a c o d n t s se
,n

(0, 0) (0, 2)

Check-Point
4,3)

(2,0)

100 meters

100 meters

Figure 6: NPSNET: Coordinate System

F. GENERATING MESH TERRAIN

1. Creating the Binary Elevation file.

The binary elevation file is key to the creation of the three-dimensional mesh

terrain, and the determination of the locations of all objects within the three-dimensional

world. The program "genbinaryelev.c" extracts the elevation data from the file, ###.ele.

Then these elevations are then rewritten in column-major order (using the NPSNET

cartesian coordinates as indices) to the binary file, elev.bin.dat.

2. Creating Mesh Terrain

Mesh terrain is created using the built in "IRIS" function for drawing a triangular

mesh, commonly referred to as "t-mesh". Each checkpoint is treated as one of the three

points of a triangle. The t-mesh terrain skin is built by moving from the left to the right of

the map, then from the bottom to the top of the map. Figure 7 depicts the path of points used

in the t-mesh function.

25

(minx, minz) (maxx, minz)

5- 1
(minx, maxz) (maxx, maxz)

- lg Bottom
Left to Right then to Top

Figure 7: Tri-Mesh Terrain Traversal Pattern

When the right side of the map is reached, the mesh terrain algorithm moves the

pointer back to the left edge and begins the next row. As stated earlier, the mesh terrain is

more efficient and simpler to implement for the terrain model, but roads and rivers cannot

be displayed on this terrain without significant tearing.

G. GENERATION OF POLYGONIZED TERRAIN SKIN

The best three-dimensional terrain image is rendered using a terrain skin comprised of

discrete, triangular polygons. Because each polygon is a discrete element, each one can be

manipulated -- or any object on it -- with great precision.

1. Structure of Polygonized Terrain

a. Description of Grid Node

A grid node is the basic building block for polygonized terrain (see Figure

8). Each node is made up of two triangles, an upper and a lower. (From the figure it appears

that the positions of the two triangles are reversed, however, because measurements are

26

taken from the upper-left hand comer of the mal, the upper triangle is the triangle farthest

from the origin.)

(x, z) Lower (x+I, z)

Upper
(x, z+ 1) (x+ I, z+

Figure 8: Basic Terrain Node

The numbering for each grid node uses the upper-left hand comer of the

square as the local origin, with each comer of the node representing a checkpoint from the

database. Each side of the basic grid node is equal to the resolution value (GAP).

b. Polygonized Terrain Resolution

The polygonized terrain is displayed with four degrees of resolution. The

triangular polygons that make up the highest level of resolution have side lengths equal to

the resolution value (GAP) of the database. The lower resolution polygons are larger (twice

the size of the next higher resolution), thus, they are a less accurate depiction of the terrain.

High resolution terrain is rendered as the set of polygons that are closest to the viewers look

at point, while lower resolution polygons are rendered for terrain that is at increasingly

greater distances from the viewers coordinates. Currently, high resolution polygons are

used for terrain that is within a 1000 meter bounding box of the viewers x and z coordinates.

Successively lower levels of resolution are used for polygons that are at distances greater

than 2500, 4500 and 6000 meter, as measured from a bounding box that surrounds the

viewer's position[MACK 91]. By using low resolution polygons for distant terrain, the

number of polygons rendered is significantly reduced without sacrificing detail. This

reduction increases the frame rate and efficiency of the machine.

27

c. Description of a Terrain Quadtree

Because each grid cell of the terrain is represented by four different

resolution sets of polygons, a special data structure was implemented to store the data. This

structure is called a quadtree -- a type of hierarchical data structure based on recursive

subdivisions. The general idea behind quadtrees is that each level of the tree provides a

more detailed description of an image or data. Nodes are either internal (with four children)

or are terminal (with no children). They can be used to reduce storage space for data or to

provide multiple resolution versions of data [MACK 91].

In order to get the transposed JANUS(A) database into the NPSNET

quadtree format, the terrain is divided into blocks of cells. Each block is eight grid cells

long and wide, and is marked as item "D" in Figure 9. This "D node" is the basic unit of

storage for the terrain base, and is further subdivided into four nodes or children. These

children are labeled as the set of "C" nodes. Each "C" node, too, is subdivided into four

nodes labeled as the set "B". And finally each "B" node is divided into four "A" nodes. The

length of the side of the block is eight times that of the GAP for the terrain. The corners of

the upper and lower triangles are locally represented as (x, z), (x+8, z), (x, z+8) and (x+8,

z+8). The resolution levels for the quadnodes are labeled as follows:

"* HIGH 1 Side Length = GAP

"* HIGH-MEDIUM 2 Side Length = GAP * 2

"* LOW-MEDIUM 3 Side Length = GAP * 4

"• LOW 4 Side Length = GAP * 8

28

(x, z) (x+2, z) (x+4, z) (x+8, z)

A A'B A" -' B'

C C,

B

D I

C" C",

(x, z+8) (x+8, z+8)

Figure 9: Quadtree: Terrain Illustration

These sets of nodes are stored in the quadtree structure, with each node or

cell representing a node in the tree, and the four nodes that make up the subdivision of a

larger node are children of the divided node (see Figure 10). The quadtree data structure

produces a shallow tree that can quickly be searched to find the terrain cells required.

Figure 10: Quadtree: Data Structure Illustration

29

2. Generating Terrain Polygons

The program "genblockcov.c" divides the map into sets of quadtrees. In order to

have a whole number of quadtrees in the database, the width of the entire map

(XMAPSIZE) and the height of the map (ZMAPSIZE) must be a multiple of the product of

the GAP value and the integer 8. (See Eq 4.3)

Whole Number = MAPSIZE (Eq 4.4)

(GAP x 8)

If the map size, in either the x or y direction, does not provide a whole number,

as indicated in Equation 4.4, then additional checkpoints need to be added to the database

until Equation 4.4 is satisfied. The calculation to check for the appropriate number of

checkpoints is conducted in the program "readtrrn.c". If more checkpoints are required,

then the checkpoints are all given the elevation of the lower-left comer of the map. The

following algorithm describes the additions of the checkpoints to the database.

/* Determine if extra checkpoints are needed to make */
/* the number of quadnodes a whole number. */
z_num _extranodes = (ZMAPSIZE / GAP) mod 8
x_num_extranodes = (XMAPSIZE / GAP) mod 8
if (xnum extra_nodes != 0.0) then

oldx_numgrids = x numofgrids
/* Add the new x direction checkpoints *1
x_nuinofgrids = x_numn_of grids +x_numextra_nodes

if (znum_extra_nodes != 0.0) then
old_znum.grids = z_numofgrids
/* Add the new z direction checkpoints */
z_num_ofgrids = z_numofgrids +znumextranodes

/* Fill the elevation value of the new checkpoints */
for i = old_xnumgrids to xnun_ofgrids loop

for j = oldz_num._grids to z_numofgrids loop
grid(i, j).elevation = grid(0, 0).elevation

end loop
end loop

Figure 11: Algorithm to Adjust Map Size According to Quadnode Requirements

30

Each set of data for a quadtree is stored in a unique file labeled

coverXXZZbin.dat, where XX and ZZ reference the x and z indices for the quadtree. In order

to optimize the search routines within a quadtree, each quadtree structure is represented as

a heap in the code. A heap sort is used to find the correct resolution level within the file

[MACK 91].

Each node of the quadtree is represented in the cover file as two sets of three

points each, with each triple of points representing the upper and lower triangle of the node.

With each point set, the quadtree indices, number of points in the set, the color for the

triangle, an index indicating if the triangle is an upper or lower triangle, the normals for the

triangle and the resolution level of the polygon are recorded. Figure 12 illustrates the

storage pattern for a single node.

normals 0 119 3 12 1 u g x &z block coordinates,

0- 0.128511 0.988550 0.079084 # of vertices,
0.000000 324.000000 12000.000000 color, node level, upper!
0.000000 332.000000 11900.000000 lower
100.000000 311.000000 12000.000000l
0 119 3 12 1 1
0.148080 0.987200 0.059232
0.000000 332.000000 11900.000000 v co .nt
100.000000 311.000000 12000.000000 vertex coordinates
100.000000 317.000000 11900.000000

Figure 12: Quadnode File Representation

H. GENERATION OF NPSNET ROADS AND RIVERS

As stated in Chapter III, the program readtrrn.c creates the road and river data files

labeled road.dat and riv.dat. These files list successive x and z pairs of grid coordinates for

a road or river. A flag in the file indicates when a road or river ends and when the end of

the entire file is reached. In order to create the road and river polygons, all road and river

data must be grouped as pairs of successive points. Each pair of points is then converted

into a multisided polygon with no more than six sides (six is the limit on the number of sides

because that is the maximum number of sides created when a two triangles connect with a

rectangle). The width of each polygon is standard -- currently 10 meters. The new road and

31

river polygons are subsequently written in the same format as each of the quadtree

polygons, which is described in Figure 12. These road and river polygons are then sorted

according to their coordinates, and placed in the quadtree file containing the corresponding

coordinate. Polygon construction for roads and rivers is conducted using the program

makeroads.c.

In the data set used in NPSNET, the polygons forming the ro;.d and river surfaces are

coplanar with the polygons forming the underlying terrain surface. Therefore, the roads and

rivers must be "decaled" onto the terrain. Decaling involves rendering the terrain twice,

thus is more expensive to perform. For this reason, roads and rivers in NPSNET are only

rendered on terrain at the highest resolution [MACK 911].

L GENERATION OF NPSNET CITIES AND TREES

1. A Three-Dimensional Interpretation of Two-Dimensional Objects

Two-dimensional simulations traditionally render trees, cities, vehicles and

other cultural objects as two-dimensional geometric shapes or icons (e.g. a square or circle).

In the JANUS(A) mredel, trees and cities are depicted as colored squares. Trees and

vegetation are colored varying shades of green, where the shade indicates the average

height of the vegetation contained in the area of the square. Cities and urban areas are

rendered in the same manner, using varying shades of yellow to depict height. The size of

each square corresponds directly with the resolution level of the terrain database [JANUI

861. Developing a realistic three-dimensional representation from these two-dimensional

squares proposed a problem.

As mentioned earlier, the NPSNET model currently uses NPSOFF models to

render cultural objects such as houses and trees [ZYDA 91a]. Two problems arise when

trying to use these models in conjunction with the JANUS(A) database. The first problem

involves determining the appropriate number of single trees or buildings to render in any

given grid cell. The second problem is the unacceptable degradation of the graphics frame

32

rate if the terrain is even moderately wooded. This is because the number of trees that need

to be rendered significantly congests the graphics pipeline.

To solve the problems listed above, rendering of heavily wooded and large urban

areas is performed with three dimensional canopies instead of individual trees or cities. The

height of a canopy is taken from the URBAN and VEGETATION height factors extracted

from the JANUS(A) terrain file. The length and width of each canopy is equal to the

resolution value (GAP) of the database, therefore, each canopy covers exactly one high

resolution grid cell. By rendering only one canopy per grid cell, the number of polygons

used for the terrain model is greatly reduced, allowing an adequate frame rate in the model.

To further increase the frame rate, the t-mesh function is used to draw the canopies.

The use of canopies solved the frame rate problem but did not provide a total

solution to the problem of realism. If a grid cell contains a tree or city, together with a river

or road, then the river or road would be covered by the canopy. The loss of the rivers and

roads is not realistic and significantly degrades from the usefulness of the model.

Therefore, a method was developed that stochastically rendered individual trees and

buildings, using NPSOFF models, within a grid cell that contained a road or river plus a

tree or city. However, this random placement of the objects causes another problem by

allowing a tree or building to be placed in the center of a road or river -- again unrealistic.

To eliminate this phenomena, another algorithm was developed that checks the placement

of cultural objects against the location of rivers and roads. If they coincide, then the object

is relocated. The generation of these cultural objects is discussed in the next sections.

2. Generation of City and Tree Canopies

In order to create the trees and cities, the information concerning the presence of

trees or cities and the height of these cultural objects, that is stored in the file ###.ele, is

required. Its important to note that the tree and city data applies not only to the checkpoint

of assignment, but also to the grid cell assigned to the checkpoint. Because each checkpoint

makes up the comer of four different grid cells (except on the sides of the map), the user

33

must be careful to properly and consistently assign the correct cell to each checkpoint. If

this assignment is inconsistent, then the user can easily lose track of which cell should have

a tree or city drawn in it. The JANUS(A) convention of cell assignment is translated to

match the NPSNET coordinate system and is used in the algorithms discussed next. This

convention assigns each cell to the checkpoint in the northwest comer of the cell.

a. Description of a Canopy

Each canopy is composed of up to five t-mesh sides; a top, back, front, left,

and right as depicted in Figure 12. Each of these sides is made up of two triangles. Two

advantages are gained from this triangular design. First, it allows the use of the efficient

SGI, t-mesh function. And second, the triangles that make up the top of the canopy

correspond directly to the triangular polygons that make up the high resoluton terrain

polygon beneath the canopy. This correspondence allows the top canopy to fold in the

center in the same fashion as the underlying grid cell providing a very smooth covering of

the terrain.

... height
factor

Left.....
..... (x+GAP, z)

(x, AP)(x+GAP, z+GAP)

Figure 13: Drawing of a Tri-Mesh Canopy

34

b. Determining the Canopy Height

The height of each comer of the canopy is determined by the height factor

assigned to the checkpoint that matches the corresponding comer of the canopy. This height

factor for each comer of the canopy may be different, because the height factor for each

comer of the cell is taken from the checkpoint directly beneath the canopy comer, not from

the master checkpoint for the cell. If the checkpoint corresponding to a corner of the canopy

does not contain a tree or city then the height factor is given the value of zero for that comer.

The assignment of zero as a corner's height factor causes the canopy to slope into the

ground.

c. Construction of Canopy Sides

Canopy sides are not always drawn. A side is drawn only if one of the

following criteria are met:

"* The cell, adjacent to the side in question, contains trees or cities and a road
or river passes through the adjacent cell.

"* The cell just north of the current grid cell does not contain trees or cities.
"• The cell just west of the current grid cell does not contain trees or cities.

If one of the above conditions does not occur, then one of two other possible

conditions exists. For these two conditions the side is not drawn. The first non-draw

condition occurs when the cell adjacent to the side of the current grid cell, contains a tree

or city and there is not a road or river in the cell. If this case occurs, the canopy top will

smoothly connect with the canopy top of the adjacent cell. This decision to not render it

reduces the number of objects in the graphics pipeline, and does not degrade the viewers

image, because the side would not be visible anyway. The second non-draw condition

occurs when there are no trees or cities in the cell adjacent to the southern or eastern side

of the grid cell. As previously mentioned, this case causes the top of the canopy to slope to

the ground.

In order to draw the sides or top of a canopy, the following pieces of data

must be present:

35

* Elevation for each checkpoint.

• Flag indicating whether a tree or city is present in the cell.

* Point normals for the four checkpoints of the grid cell.

* Height factor for the tree or city.

The elevation, normals, and world coordinates for each checkpoint are

stored in a two-dimensional array called mapgrid[i])]. The indices, i andj are the NPSNET

coordinates of the checkpoint. The city or tree present flag and the height factors for each

checkpoint are stored in a separate, two-dimensional array called treecityarray[i]j], which

is created by the program maketrees.c. A separate array is used to store the tree and city

canopy data, allowing the NPSNET combat model to retain its flexibility for use with all

prior and current modeling systems that use the NPSNET platform. The indices in both

arrays are intentionally the same because they refer to the same grid intersection.

2

mapgrid*(i, j),/ /•e Polyp s Japgrid(i+l' j)Iin

mapgrid(i, j+1) mapgrid(i+l, j+1)

Figure 14: Order of Points for T-Mesh Canopy Top

The order of points for the t-mesh function is depicted in Figure 14. This

ordering was chosen to ensure that the direction of the hypotenuse of the triangles in the

canopy matched the direction of the hypotenuse for the polygons used in the underlying

36

terrain skin (i.e. the hypotenuse runs from the northwest corner to the southwest corner of

the cell). The algorithm to draw the canopy top follows:

treedata: is an array of float numbers that contain the x, y
and z coordinates of a point./* point #1 */
tree data(0] = x;
tree~data l] = mapgrid[i][j+l].elev + treedata[2] = z + GAP;

treecityarray [i][j+l].height;
n3f(mapgrid[i] [j+l].normal);
t2f(blocktreetexutre[0]);
v3f(tree..data);
/* point #2 */
tree_data[O] = x;
tree_data[l] = mapgrid[i][j].elev + treecityarray(i](j].height;
tree_data[2] = z;
n3f(mapgrid[i](j].normal);
t2f(blocktreetexture[3]);
v3f(tree-data);
/* point #3 */
tree_data(O] = x + GAP;
tree_data[l] = mapgrid[i+l] [j+l] .elev +treecityarray[i+l] [j+l].height;
treedata[2) = z + GAP;
n3f(mapgrid[i +]([j + 1].normal);
t2f(blocktreetexture[l]);
v3f(tree-data);

/* point #4 */
tree_data[O] = x + GAP;
tree_data[l] = mapgrid(i+1] (j] .elev + treecityarray[i+1] (j] .height;
tree_data[2] = z;
n3f(mapgrid(i + 1)jI.normal);
t2f(blocktreetexture[2]);
v3f(treedata);
endtmesho;
if(flags.textureflag) texbind(TX_TEXTUREO, 0);

Figure 15: Algorithm to Draw the Canopy T-Mesh.

The functions n3f, t2 f and v3 f, listed in Figure 15, are SGI library

functions that bind the normals, texture and grid coordinates to a particular point. The t-

mesh operation uses these values to render the mesh. The sides of the canopies are drawn

using an algorithm similar to the one written for the canopy top (see Figure 14). However,

the checkpoints and heights vary for each of the sides. The ordering of the points for the

side walls, used as input to the t-mesh function, must also cause the formation of two

distinct triangles.

The normals for the walls are as follows:

37

* back wall normal (0,0,-i)

• front wall normal (0,0, 1)

r right wall normal (1,0,0)

* left wall norrnal (-1,0,0)

3. Placement of Individual Trees and Buildings

When a road or river is present in a grid cell containing a tree or city, individual

trees or buildings are rendered in lieu of canopies. The general description of a tree and

building is illustrated in the figure below.

Tree Base
upper-left .,1 upper-right4,,- 1-2

- - cester
.... ----..-"J ce te

----------- . wei ft" lower-right

Building Base
upper-left midtop upper-right

m idleft , m id~right

center

-A

___ lo..wer-left--ot- om lower-right

Figure 16: Cultural Object Description

The number of trees or buildings placed in a grid cell is based on the height factor

assigned to the cell from the JANUS(A) data base. The exact location of each of these

cultural objects within a grid cell is determined randomly. The following routine ensures

that a tree or building is not placed on a road or river. It accomplishes this by ensuring that

38

each of the vertices of the base of the object, as depicted in Figure 16, do not fall inside a

polygon that makes up a road or river.

a. Tree Placement

To determine whether or not a vertex falls inside a polygon, the following

six-step Tree Placement Algorithm was developed:

Case 1 (0,0) Line 'L'
A&,•r'f "'° A B

Tree Base (x-0.5, z-0.

.." (x, Z) ,,

Road Polygon

C

Case 2
(0,0) Line 'L'

Tree Base (x + 0.5,,,z'- 0.5)

Road Polygon

C

Figure 17: Polygon Intersection Examples

39

(1) Create a new point at the locationa (0, 0) on thc map.
(2) Then calculate the equation of the line, 'L', that passes through the tree base vertex

in question and the point (0, 0) using Equation 4.7.
(3) Determine the equations for the lines that make up each side of the road or river polygon

(line Segments AB, BC, CD, DA as shown in Figure 18.).
(4) For each line segment of the road or river polygon, test if it intersects the fine segment "L'.
(5) Count the number of polygon line segments that intersect the line L'. If the count is even

then the vertex is not located inside the road or river polygon. If the count is odd the vertex is
located inside the road or river polygon.

(6) If the segment intersection count is odd, then reposition the tree, and test for an intersection again

Figure 18: Tree Placement Algorithm

In case I of Figure 17, the line segment L does not intersect any of the line

segments that make up the road or river polygon. Therefore the line segment intersection

count is zero. Since 'zero' is an even number, vertex (x - 0.5, z - 0.5) does not lie within the

road/river polygon. In case 2, line segment L intersects line segment DA and no others.

Here, the line intersection count is one. Because the number 'one' is an odd number the

vertex (x + 0.5, z - 0.5) d= lie within the road or river polygon. Therefore this tree must

be relocated and tested once again for possible intersection with a road or river polygon.

b. Building Placement.

The placement of the buildings uses the tree placement algorithm with the

following modification. Because a building is wider than a road it is possible for all four

comers of the building base to lie outside of a road or river polygon, while the middle

portion of the building lies inside. Therefore, the tree placement algorithm is modified to

check the midpoints of each line segment that make up the base of the building (see Figure

16). This guarantees that if a portion of a building is set on a road or river, then one of the

vertices or midpoints will be located in a road or river.

40

c. Equations for Determining Line-Polygon Intersections

The tree placement algorithm is straightforward, but the equations that

determine line segment intersections deserve further mention. First, the following

equations are used to calculate the equations of the various line segments.

Line Slope: m - y- (Eq 4.5)
Xi -- X

Y Intercept: b yj - (m x x,) (Eq 4.6)

Line Equation: y = mx + b (Eq 4.7)

To determine whether the line segment L intersects any of the line segments

of the road or river polygon, the following geometric principles are required. (The

following discussion refers to Figure 19.) Chose the points P ,p 2 and P3 and the points P1 ,

P2 and P4, where PI and P2 are the end points for line segment A, and P3 and P4 are the

end points of line segment B. If the radial direction of the ordering of the points, as listed

above is not the same in both patterns, then the line segments must intersect with each other.

Only the intersection of the line segments would cause one of the end points from lin,.

segment B to fall in-between the endpoints of line segment A, thus causing the ordering of

the two sets of points to change form clockwise to counterclockwise or vice versa.

The same is true about the following two orderings of the points P3, P4 and

Pt, and the points P3, P4 and P2. This leads to the following proposition:

A necessary and sufficient condition for two closed line segments to cross each
other is:

[order (P1P P 2, P 3) * (order (P1, P 2, P 4))]

A

[order(P 3, P4, P1) order (P 3, P 4, P 2)] (Eq 4.8)

[KANA 91]. As pointed out in the paper by Y. Kanayama, on page 8 of his

article, the signs associated with the areas of the triangle formed by the triples of line

segment end points, correspond directly with the ordering of the points. Therefore,

Equation 4.10 is easily implemented using the areas calculated with Equation 4.9.

41

Case I -Case 2

P2 P2

P4 P

CCW* Cw-:

BA -AB A

P3 P1 P3 P1

The Ordering of P1, P2 and P4 While the Ordering of P1, P2 and P4
Is CCW In Case #1. Is CW In Case #2.

Figure 19: Illustration of Line Segment Intersections

The order function returns the sign (positive, negative, or zero) that is

assigned to the area of the triangle formed by the triple of points that are input to the

function. The number 'one' indicates a clockwise ordering, and the number 'negative one'

indicates a counterclockwise ordering. The number 'zero' indicates that the points are

coincident upon the same line segment.

Area(P1, P 2,P 3) = (2)×(((x2-x) X (y3 -y)- ((x3-x) X (y2 -y)))) (Eq4.9)

(1) ifsign (Area (P1,P 2,P 3)) >0
Order (P I I 2, P 3) = (0) if sign (A rea (P1 , P 2, P3)) = 0 (Eq 4.10)

(-1) if sign (Area (Pt, P2, P3)) < 0

42

V. NPSNET: GENERATION OF A THREE-DIMENSIONAL SCRIPT

This chapter outlines the procedures required to create a script for the three-

dimensional simulation, NPSNET, from postprocessor files written by the two-

dimensional, JANUS(A) simulation. The major hurdle to overcome for this conversion, is

that a two-dimensional game does not require (and in this case, does not produce) all of the

information needed to define what a vehicle is actually doing at every moment in the game.

A. THREE-DIMENSIONAL INFERENCE PROBLEM

In the traditional JANUS game, vehicles are represented on a two-dimensional screen

using a simple icon. Depending on whether a vehicle is classified as "friend" or "foe", this

icon is permanently faced to the left or right and no indication is given to its direction of

travel, its orientation, or its gun tube/sight orientation [JANU 86]. As mentioned in Chapter

Ill, JANUS(A) supplies the following five types of postprocessor files:

1) Movement (position of a vehicle).

2) Artillery (location of indirect fires).

3) Fires (which vehicle shot who).

4) Kills (who was killed by whom).

5) Detection (which vehicle detected another vehicle) [JANU 86].

In general these files list the x and y coordinates of a vehicle at the time an event

occurs. Additionally, who it shot, the location of the target, the location of impact for each

artillery shot, and the clock time for each of these events is included with these listings

[JANU 86]. When the actual JANUS model is running, it is possible, upon request, to find

out the speed of a vehicle and its line-of-sight fan. However, this information is not

recorded in the postprocessor files.

In order to recreate a viable three-dimensional representation of the game, new

information about what each vehicle was doing between recorded events must be inferred.

The C Language Integrated Production System (CLIPS) expert system shell was chosen as

43

the inference engine to generate this new information [GIAR 89]. CLIPS was chosen

because of the considerable amount of pattern matching that needs to take place.

B. APPROACH

The first step in the information inference process is to determine the data that

NPS NET requires for rendering. One of the capabilities of NPS NET is to display and move

vehicles according to a script. To read the script, NPSNET first compares the current game

clock with the time assigned to the top element in the script file. If the game clock is greater

than or equal to the event time, then the event is read and its instructions are implemented.

To simplify the processing of a script, each line in the script file is considered an event. The

information contained in each event line is as follows:

"* Time

"* Vehicle Number

"• Vehicle Type
"* X coordinate

"* Z coordinate (referred to as the Y coordinate in a 2D world)

"• Vehicle orientation (in positive radians)

"* Weapon orientation (in positive radians)

"• Speed (meters per second)
"* Shot fired (1= Yes; 0 = No)
"• Alive (1= alive; 0 = killed)
"* Elevation (ground vehicle = 0; helicopter = 100 meters; plane = 200 meters)

After NPSNET reads an event, it assigns the event speed and direction to the three-

dimensional vehicle model. If the vehicle shoots or dies, a flash or burning hulk is rendered

respectively.

C. CREATING THE NPSNET SCRIPT FILE

The key to inferring new information from the post processor files is to compare the

current event with the chronologically subsequent event for the same vehicle. From these

comparisons, many useful pieces of informaticn, such as the speed and direction of

44

movement can be inferred. Currently, events in the JANUS postprocessor files are listed

chronologically, with a postprocessor file appearing as shown in the following table [JANU

861:

TABLE 4: MOVE POST-PROCESSOR FILE EXAMPLE

TIME Vehicle Side Vehicle X Coord Y Coord
Number

0.10 2 5 345.8 5678.9

0.12 1 12 578.5 5478.2

0.20 1 8 566.1 5410.0

1.28 2 20 367.2 5554.9

1.30 1 12 577.1 5465.7

In order to compare two events for a single vehicle (e.g. Vehicle 12, Side I from Table

4), there needs to be an easy way to locate the next event for a particular vehicle. Searching

each of the five postprocessor files for chronologically subsequent events is a memory

intensive process that would quickly become time consuming and thus not useful.

Therefore, an event file is created for each vehicle. Next, each of the JANUS postprocessor

files is read and the events pertaining to each individual vehicle is stored in its own file.

Furthermore, a letter is appended to the head of each event to identify its event type (fire,

move, etc.). A typical vehicle event file appears below:

TABLE 5: EVENT FILE FOR VEHICLE 12, SIDE 1

Letter Time X Coord Y coord Target X coord Target Y coord

M 0.12 578.5 5478.2

M 1.30 577.1 5465.7

F 2.88 570.5 5461.2 458.9 5889.7

K 3.5 570.3 5459.9

M= move; F =fire; K = kill; A = artillery; D = detection

45

With the events for eacui vehicle stored in a single file, it is now easy to read an entire

vehicle event file into memory, compare two chronological events for a vehicle, and infer

some useful information about the vehicle's activities between listed events.

D. INFERRED INFORMATION REQUIREMENTS

In general, there are three activities that a vehicle could possibly perform between

listed events. It can be halted, moving, or killed. In order to present a realistic three-

dimensional representation of these three activities, the following pieces of information are

inferred:

"* Orientation of the vehicle

"* Orientation of the weapon (turret)

"* Direction of movement (if moving)

"• Speed

The basic speed and orientation of the vehicle and weapon are obtained by performing

the simple calculations described below. The general mission of the vehicle is determined

in order to gain a more refined estimate of its weapon's orientation and speed. These

calculations are implemented using CLIPS Object-Oriented Language, (COOL) [GIAR

911. COOL is used because the encapsulation of the information pertaining to one object -

- and there are a lot of information slots per object -- makes it easy to manipulate the object

as a whole.

E. BASIC CALCULATIONS

These simple calculations are used to determine basic speeds and directions.

•ggad: The classic equation:

velocity= (Ad) / (At) (Eq 4.11)

The change in distance is calculated using the equation for the length of a line when

two points are known:

A d =(x,, - Xcurren,) + (ynext - ycurrn) (Eq 4.12)

46

The change in time is calculated:

A t = tel- tcu,,,nt (Eq 4.13)

Orientation (0):

To determine the angle, 0, take the arc tangent of the quotient of the difference

between the y coordinates and the x coordinates.

(•, - Yc,*rrent)

angle: 0 = arctanf Y - Xcuren) (Eq 4.14)(xnext - xcurent)

Once 0 is determined, then the quadrant (using the Cartesian Coordinate System) is

found by analyzing whether the difference in the x and z coordinates are positive or

negative.

Then these values are used to access the following table, which gives the quadrant

factor. This factor is added to 0 to produce the actual orientation of the vehicle (All angles

are measured using the x axis as the base or zero axis, with clockwise as positive rotation.

All calculations are in radians.).

TABLE 6: ANGLE OF ORIENTATIONS QUADRANT FACTORS

sign x coord sign z coord quadrant

factor

+ + 0.0

+ 2n

+

47

F. THE HEURISTIC MODEL

There are two types of missions that a vehicle may be assigned. They are the classic

defensive or offensive missions. Determining which mission a vehicle is assigned assists in

the inference of information between events. The different heuristics are explained next.

1. Defensive Heuristic

There are several characteristics that suggest that a vehicle is in a defensive

posture. The primary or tell-tale defensive characteristic is when a vehicle is travelling at a

speed of less than 3 k.p.h. This speed tends to suggest that the vehicle is either on an

extremely slow and deliberate offensive mission or it is really sitting still (in a defensive

position) for most of the time interval between the two listed events. If it moves to its next

position at a more deliberate speed of about 13 -15 k.p.h., it is assumed that it is moving to

an alternate defensive position. If this extremely slow speed is encountered, there are two

other pieces of evidence that, if present, tend to confirm the defensive hypothesis. One of

these additional pieces of evidence is whether the vehicle just completed firing a shot or

will fire a shot in the future. This tends to be true because a vehicle shooting on the move

would normally be travelling at a speed much in excess of 3 k.p.h. if it wants to survive.

The second piece of evidence assumes that if a vehicle fires in the future, and if the distance

to the next firing position is less than 100 meters, it is probably moving between fighting

positions and hence is in a defensive posture. If all of the above conditions are met then the

program asserts that the vehicle is in the defense, and as a consequence halts the vehicle

and orients it towards the enemy (towards the next target location). Then, the vehicle moves

to its next event location at a set speed of 13 k.p.h., ensuring that it arrives at the next event

location on time. There are certainly other heuristics that can suggest if a vehicle is in the

defense or not; they currently are not implemented.

A second tell-tale heuristic is whether a vehicle does not move for over five

minutes. Not moving for over five minutes suggests that the vehicle is in a defensive

48

posture -- viewing the engagement area. Then at a certain time it would move quickly to its

next defensive position.

2. Offensive Heuristic

Its assumed that if a vehicle's events do not confirm the defensive heuristic then

the vehicle is considered to be on an offensive mission. This is a simple but rather accurate

hypothesis but does not exhaust the need for other inferred knowledge.

3. Speed Smoothing Heuristic

An anomaly that becomes very apparent in a three-dimensional world, that is not

readily observed in the two-dimensional JANUS(A) simulation is, at times, a vehicle

travels at a speed in excess of 45 m.p.h. Unless the vehicle is an aircraft, this is very

unrealistic, and probably due to minor modifications in input by the user at the time of the

original JANUS(A) run. This anomaly often occurs between the initial position for a

vehicle and the first event listed in the postprocessor files.

If these two conditions occur, then at start time, the vehicle is rendered at the

position specified by the first movement rather than the location specified by the initial

conditions. It is also given a speed of zero. If this excessive speed anomaly does not occur

between the initial position and the first event, then the speed is smoothed.

The smoothing algorithm slows the speed of the vehicle to 25 k.p.h. This decrease

in speed has a natural side effect. It will cause the vehicle to not be at the correct location

when its next event is scheduled to occur (call this upcoming event, A). To compensate for

this problem a new MOVE event is created (event B) which will keep the vehicle moving

at a speed of 25 k.p.h. to the location that was specified in event A. In order to get the

vehicle back in synchronization with the remainder of the event list, the speed associated

with moving from event A to its subsequent event is increased to allow the vehicle to arrive

at the follow-on event's location on time.

49

4. Vehicle Orientation Heuristic

As a rule, the orientation of the vehicle, if moving, is always in the direction of

travel. If the vehicle is halted, the orientation depends on the following pieces of evidence:

(1) If the vehicle is firing during the current event then orient towards the

target.

(2) If the vehicle is not firing but will fire in the future, orient the vehicle

towards the next target location.

(3) If the vehicle is not firing and will not fire in the future, then use the

vehicle orientation from the last event as the current orientation.

(4) If the vehicle is placed on the battlefield but does not have any events

associated with it, then orient the vehicle in its initial view direction.

5. Weapon Orientation Heuristic

The heuristics for weapon orientation are similar to those used for the vehicle

orientation with a few differences.

(1) If the vehicle is firing during the current event then orient the weapon

towards the target.

(2) If the vehicle is not firing but will fire in the future, orient the weapon

towards the next target location.

(3) If the vehicle is not firing, will not fire in the future, but did fire in the past

then use the weapon orientation from the last firing event as the new

weapon orientation.

(4) If the vehicle never fires then orient the weapon in the same direction as

the vehicle.

G. CALCULATION OF THE HEURISTICS IN CLIPS

Using the CLIPS Object Oriented Language (COOL), each of the events listed in a

vehicle event file is read into one of the following objects: MOVE, FIRE, KILL, ARTY. It

should be clear as to which type of event is stored in which object [GIAR 91]. After the

entire file is read into memory, then each event is compared against the next event or an

upcoming firing event. These comparisons generate facts that are stored in the form of

(condition, <fact>). Then, based on the facts generated, CLIPS' inference engine will

choose the appropriate rule to execute. These rules call methods and functions which

50

generate the data required for NPSNET [CLIP 91]. Table 7 lists the combinations of facts

that CLIPS uses in determining the correct rule to use. Once a rule is chosen and the

NPSNET event data is generated, this data is written to a file specified for the current

vehicle.

Once the event file for all of the vehicles is evaluated, each of the files containing the

heuristic data is combined into a single event list file and labeled janusscript.dat. This

single file is then sorted chronologically. After sorting it is ready to be used by NPSNET

as a script file.

TABLE 7: VEHICLE STATE CONDITIONS

speed 3kph Dist Dist Time

Primary Prior Post Shot > < speed speed to to to next
activity -shot now 45 speed < kill fire fire event

shot ph < 3kph 0.0 <.lkm >.1 km >5rmin

Halt NA NA NA NA NA NA NA NA NA NA DC

Halt no no no no no no yes no DC DC DC

Halt yes no no no no no yes no DC DC DC

Halt DC yes no no no no yes no DC DC DC

Halt DC DC yes no no no yes no DC DC DC

Killed DC DC DC DC DC DC DC yes DC DC DC

Move no no no yes no no no no no no DC

Move DC yes no yes no no no no DC DC DC

Move DC DC yes yes no no no no DC DC DC

Move no no no no yes no no no DC DC DC

Move yes no no no yes no no no DC DC DC

Move DC yes no no yes no no no DC DC DC

Move DC DC yes no yes no no no no no DC

Move no no no no no yes no no no no DC

Move yes no no no no yes no no no no DC

Move DC yes no no no yes no no no yes DC

Move DC yes no no no yes no no yes no yes

Move DC yes yes no no yes no no no yes DC

51

TABLE 7: VEHICLE STATE CONDITIONS
-I-sed 3kph

speed Prio Dist Dist TimePior Post Shot > < speed s to to next

activity -shot now 45 speed < kill fire fire event
shot kph < 5 0.0 <.1km >. km > 5 min

Move DC yes yes no no yes no no yes no yes

Move DC no yes no no yes no no no no yes

Note: Not every permutation of conditions was considered meaningful. The code DC (don't care)
is used to identify conditions that are not meaningful.

52

V1. NETWORKING AND REAL TIME SIMULATION

A. JANUS(A) FOR THE UNIX OPERATING SYSTEM

1. Background

The U.S. Army realized the advantages of running the JANUS(A) combat model

on the popular and compact UNIX based workstations instead of on the cumbersome VAX/

Tektronix systems currently in use. In August of 1991, TRAC Monterey contracted with

the Rand Corporation to develop a version of JANUS(A) that would operate on a Sun/

UNIX workstation. Jim Guyton, of Rand, delivered a working prototype of JANUS(A) for

UNIX in April 1992 [GUYT 921.

The goal, and most exciting part of this research, was the question of developing

a real-time, network link between the traditional JANUS(A) model and NPSNET. In the

past, this was not feasible because of the drastically different protocols and platforms. With

the introduction of the new version of the JANUS(A) combat model, it finally became

possible to construct this real-time network.

2. Contrasts Between the UNIX and VAX Versions of JANUS(A)

This new UNIX-based version of JANUS(A), which is called JANUS(X), does

not change the "inner-workings" of the original combat model. The model itself is identical

in both versions, in fact, the same FORTRAN code is used in both models. This reuse of

the VAX-FORTRAN code is made possible by the Sun 4-FORTRAN compiler, which is

capable of translating VAX data types and system calls into their UNIX equivalents [SUN

911.

The only viable difference between the two versions of JANUS is that the UNIX

version bypasses all FORTRAN calls to the Tektronix screens, and replaces then with the

'C' programming language calls to the X-Windows environment [GUYT 921. Also, much

like the converted files mentioned in Chapter II, the input data, such as the force and system

53

files, are translated into a file format that is compatible with the UNIX operating system

[GUYT 92].

3. JANUS(X) Networking Capabilities

As mentioned above, the VAX-version of JANUS(A) is hindered by its

antiquated hardware and non-networking capabilities. This version can only be displayed

on Tektronix monitors, with the Blue force on one screen, and the Red force on another as

shown in Figure 20.

Tektronix
Monitors

VAX Gahc
S~Control

Boxes

Figure 20: The Traditional JANUS(A) Hardware Setup.

JANUS(X), on the other hand, has the added flexibility of being run on a Sun

Workstation with the display piped to the same monitor, or any other workstation and

monitor with X-Windows capability as shown in Figure 21.

54

Red and Blue Red and Blue
MRED ýDisplayed on Displayed on

Sun Monitor SGI Monitor

Blue Displaye

Red Displayed

Figure 21: Networking Capabilities of JANUS(X)

The communications between the Sun Workstation, running the JANUS(A)

simulation, and the workstations rendering the two-dimensional images is accomplished

using an Ethernet network. JANUS(X) creates messages and places them on the network

as packets. These message packets are read by a listening workstation and rendered

appropriately on its monitor [GUYT 92].

JANUS(X) executes two different programs at the same time. The main

JANUS(X) program operates on one Sun workstation. This program executes all

operations of the JANUS(A) combat model, initializes the network, and sends the message

packets to the network. The messages are prepared using the function! found in the sub-

55

program ct.c, located in the janus/sun/Xgraf directory. The second program is called xtest,

located in the janus/sun directory. This program runs on the workstation that will render the

X-Windows screens. Xtest captures the message packets that are on the network, then sends

them to the sub-program parse. Here, the messages are returned to their original function

formats, which are defined in the sub-program ct.c (Note: There are two programs named

ct.c. The one in the JANUS(X) directory, janus/sun/Xgraf, creates messages. The other

one, in the second workstation's directory, janus/sun, reads the messages.). The functions

in janus/sun/ct.c call the X-Windows library functions required to render the two-

dimensional images on the monitor. Additionally, screen inputs to JANUS (e.g. mouse

picks) are captured by xtest, recorded into a message packet, and sent back to the machine

running the main JANUS model [GUYT 92].

4. Network Message Format

NPSNET and JANUS(X) use two different message sending protocols, and

consequently, use different message formats. To accommodate both functions, messages

are first sent from the JANUS(X) game using its own format. When these messages are read

by the program xtest.c on the receiving IRIS workstation, they are changed to the NPSNET

message format. Then, they are transmitted to the program network.c on the receiving IRIS

workstation.

a. JANUS(X) Message Format

The program Xgraf/ct.c has the important task of preparing packets to send

across the network. Each of these packets contain, among other things, the specific graphics

function calls, which are used to display the battle on a 'listening' monitor. Each of these

message producing procedures has two common elements, besides the function itself. First,

each screen (red force and blue force) has a unique file pointer, referred to as a "screen

pointer", assigned to it. The variable containing the address of the screen pointer is labeled

grout as shown in Figure 22. Additionally, JANUS(X) stores the number of the screen

currently being addressed in the global variable ramtek_[O], which is either the integer

56

"one" or "two" referring to the blue or red screen respectively. Secondly, every object

displayed on the screen is assigned a unique identifier. This identifier, an integer value, is

referred to as the segment-number as depicted in Figure 22 [GUYT 921. This

segment-number, which is key in rendering the appropriate item on the monitor, can be

anything from a tactical vehicle to a line that makes up a border of the screen. Another piece

of important information, often included in a message, is the grid coordinate for the object

referenced in the message.

When the JANUS(X) program calls one of the functions in the subprogram

Xgraflct.c, the name of the function, along with a list of arguments representing appropriate

drawing commands, are passed to the function ctfprintf as illustrated in Figure 22. When

called, the ctprintf function places the set of arguments from the message into a queue

named va args. When this argument queue reaches a total of 80 arguments, the queue is

packaged into one message packet and placed on the network. As mentioned above, the 80

argument message packet is received by xtest, then parsed into the original set of function

calls. All integer and real numbers are passed by reference with in the JANUS (X) program.

However, these same integer and real numbers are passed by value withir the message

packets.

57

Segment Number: nque to each object Map Coordinates of segment/object

ct-callsegment_(segmentnumber, position x, positiony, attributesflag)
int 7segmentnumber;
int 'positionx; /° position is really 1 parameter of type XY+ 'I
int *posftiony;
int 'attributes-flag; Library Function Reference

fprintf(grout, "ct_call segment, %/od, %/d, O/d, %/d\n",

*segment numb6r, *position-x, *positiony, *attributesflag);

Screen Pointer

Figure 22: JANUS(X) Network Message Example

b. NPSNET Message Format

The NPSNET network protocol is simpler than that used by JANUS(X).

Messages consist of a lead character, followed by a set of integer and real number

arguments as shown in Figure 23. The lead character is used in the parsing process to

indicate to which message function the incoming message belongs. The definition of the

lead characters of the messages are defined in the file network.h of the NPSNET program.

Instead of batch messages, NPSNET packages each message individually, using the 'C'

sprint] function. The message is then placed on the network using the function

putmessonnet, found in the program janus/sun/ct.c.

The NPSNET sub-program network parses all incoming messages using the

lead character of the message as the key. Once parsed, the message is passed to the

appropriate function in NPSNET.

58

ct send veh fire (numunit, numside, tgtunit, tgtside)
int *numunlt;
int *numside;
int *tgtunit;
int *tgtside;{

char message[MESSAGELENGTH] -Lead Character

sprintf(message,"%c O/d %d O/%d /d"
JANFIREMESS, *numunit, *numside, "tgtunit, *tgtside);

putmessonnet(message);I

B. N, -NET MESSAGES FROM JANUS

1. General Message Translation to NPSNET Format

a. Segment Number Conversion

The segment-number uniquely identifies every object that JANUS(X)

wants drawn. The blue force vehicles are assigned the segment numbers between 600 and

1199, and the red force vehicles are assigned segment numbers from 1200 to 1799. The use

of this "single-number" identifier presents a problem, because the remainder of the

JANUS(X) model uses a "two-number" identifier (force side and vehicle number) to

identify a vehicle. However, because the starting index for each force's vehicles is known,

as well as the length of the segment of numbers assigned to the blue and red vehicles, it is

possible to calculate the force side index and the vehicle number. To calculate the force side

index, divide the segment-number by 600 using integer division as described in Equation

5.1. To calculate the vehicle unit number index, take the modulus of the segmentnumber

base 600 as shown in Equation 5.2.

Side = (Segment-Number) div (600) (Eq 5.1)

UnitNumber = (Segment-Number) mod (600) (Eq 5.2)

b. Grid Coordinate Translation

Recall that JANUS(X)'s origin for its coordinate system is situated at the

lower-left hand comer of the map. Also, the origin is not labeled (0, 0), but is labeled

59

according to the UTM coordinates assigned to this point in the world, in kilometers.

NPSNET, on the other hand, has its origin in the upper-left hand comer of the map, and

references this location by the coordinates (0, 0). Also, NPSNET measures distance in

meters not kilometers. Therefore, for NPSNET to recognize the JANUS(X) coordinates

these coordinates must be translated to the NPSNET system format. To further complicate

matters, JANUS(X) masks the thousands digit of each coordinate in order to save room in

memory. This digit must be reconstructed for NPSNET's use.

In the JANUS(A) terrain file, the map origin's UTM coordinates

(coordinates of the lower-left hand comer of the map) are specified in their entirety, thus

providing the information needed to restore the thousands digit. Dividing each UTM origin

coordinate by 1000, using integer division, reconstructs the value of the thousands digit.

Multiplying this value by 1000 yields a value which, when added to the JANUS x and z

coordinates, provides the entire UTM coordinate (see Equation 5.3 and Equation 5.4).

Once the thousands digit is restored to each of the JANUS grid coordinates, these

coordinates are transposed to the NPSNET system using Equation 5.5 and Equation 5.6.

XJANUSLrrM ý= I (XOriginJANUS/lO0O) + 1000] +XJANUS (Eq 5.3)

YJANUSUTM= [(Y-OriginJANUS/IO0) + 1000] +XJANUS (Eq 5.4)

XNpsNET = (XjA1 uStrrm - XOriginJAIVS) X 1000 (Eq 5.5)

ZNPSNET = Height..ofMap - I (Y]ANUSurM - Y--OriginJaNUS) X 1000] (Eq 5.6)

c. Vehicle Model Identification

Once a segment number is identified as belonging to a vehicle, its vehicle-

type or system-type is determined (i.e. tank, truck, etc.). JANUS(A) references the

attributes, which includes the system-type pertaining to a particular vehicle ,.'Uing a two

tiered system. The first tier refers to a data structure called systype. Systype is a two-

dimensional array that contains the name and other characteristics of a particular system

(JANUS refers to a weapon or vehicle as a "system"). The first index into the systype array

is the force side of a particular type of vehicle (e.g. M1 Al tank may have the force side

60

index "one", while a BMP may have the force side index of "two"). The second index,

referred to as numtype, is a value between 0 and 49 inclusive, that selects the specific

vehicle type in question. (e.g. A tank may have the index of five and a fuel truck the index

of nine.). Once chosen, these systems characteristics are stored in the systype data structure.

The second tier in the vehicle identification process refers to a structure

named unitsdata. Unitsdata is another global, two-dimensional array. This array uses the

force side number of a vehicle and its vehicle identification number as indices. This array

contains the numtype for each vehicle, which is needed to index into the systype array and

ultimately identifying the vehicle's system-type. Figure 23 illustrates the indexing

technique required to identify a vehicle's system-type.

numtype = unitdata[forcesidel[vehicle-number]
system type = sysdata[force-side][numtype]
vehicle-type = systemtype

Figure 23: Vehicle Type Identification

d. Elimination of Multiple Update Commands

JANUS(X) creates two separate screen images -- one for the blue force and

one for the red force. Initially, vehicles that belong to each force are only rendered on the

screen assigned to the owning force. However, as a vehicle of an opposing force arrives at

a position on the map that enables it to observe some of the opposite force's vehicles, then

these observed vehicles are rendered on both screens. This means that two identical

graphics messages are sent across the network, indicating that the same image be rendered

once on each screen. If the identical update messages are sent twice, NPSNET will try to

update the image twice. Therefore, the side of the vehicle is checked against the number of

the screen it is assigned. If the side and screen number do not match, then that update

message is not passed to NPSNET as illustrated in Figure 24.

61

ct deletesegment_(segment-number)
int *segment-number;,

int *numunit, *numside, *screen,
float *vehview;
float xaddedamount, zaddedamount;
double *xu, *yu /* x and y coordinates */

/* blue units go from 600 to 1199 and red units go from 1200 to 1799 */
*numunit = *segmentnumber%600;

/* blue is I red is 2 */ Reconstruct Side and Unit Indices
*numside = *segmentnumber/600: -A'--

/* displaying on red or blue screen? */ Check For Duplicate Message
*screen = ramtekJO];

/P only kill a vehicle if it is killed on its own screen */
if((*numside == 1 && *screen = 2) II (*numside = 2 && *screen == 1)) 1 -

xaddedamount = (float)((int)MAPXORIGIN/1000) * KM2M; , Reconstruct
zaddedamount = (float)((int)MAPZORIGIN/1000) * KM2M;- Thousands Digit

/* get x and y values and convert to npsnet values */
/* unitsdata is a fortran common block */
*xu = unitsdata_.xunitf*numside-1][*numunit-1];-
*xu = (*xu + xaddedamount - MAPXORIGIN) * KM2M; T

STranspose Coordinates
*yu= unitsdata_.yunit[*numside-I][*numunit-1]; to NPSNET Coordinates
*yu - (*yu + zaddedamount - MAPZORIGIN) * KM2M;
*yu = (ZTALL*KM2M) - *yu; I

/* get view direction and convert to npsnet values */*vehview = direcL.dview[*numside- I I [*numunit- 11;
*vehview = TWOPI - *vehview;

/* send kill message to npsnet */
fprintf(grout, "ct-geL vehkill mess, %d, %d, Wf, %f. %f''n", 44 NPSNET

*numside, *numunit, *xu, *yu, *vehview); Message

fprintf(grout,"ct.delete-segment, %dWn",*segmentnumber); -,4. JANUS(X)
Message

Figure 24: Sample Network Message Code

2. NPSNET Initialization

In order for NPSNET to read a JANUS(X) message and identify the specified

vehicle in the NPSNET world, the vehicle array in the NPSNET system must be initialized

as described in Chapter IV. To complicate this initialization process, JANUS(X) does not

send any special initialization messages across the network. Therefore, there is not a one-

62

to-one message correspondence capable of providing the information needed to initialize

NPSNET's vehicle array. However, two observations concerning JANUS(X) provide the

capability to accomplish this initialization. The first being that JANUS(X) begins game

play by drawing all vehicles to the screen once. The second is that there is one unique

message that JANUS(X) sends just as game play commences, called x enablegin. Using

these facts, the initialization process is started by sending NPSNET the message

ctget initvehmess every time JANUS calls its own vehicle update message function,

ct set segmentfposition. This initialization message is further flagged by a condition

clause that checks to see if JANUS has sent the xenablegin message. If x-enablegin was

sent, then the boolean value, start-boolean, is set to true causing the initialization messages

to be replaced with vehicle update messages.

Upon receipt of an initialization message, NPSNET assigns the incoming

vehicle an NPSNET identification number referred to as vehnum. The identification

number is then stored in a two-dimensional array called

janus2npsveharray[sidel[unit number], where the indices into the array are the JANUS

force side and unit number of a vehicle. This new array is used to cross reference between

the JANUS indices for a vehicle and the NPSNET index for a vehicle as shown in Figure

25. The initialization message contains two other important pieces of information. First the

vehicle type, referred to as iconnumber in the code, is sent. NPSNET uses the iconnumber

to lookup the NPSOFF model type. The table named janicontable contains the NPSNET

model numbers. This model number, is then assigned as the vehicle type or vehtype of the

vehicle. The other important piece of information sent in the message is the x and z

coordinates of the vehicle. These values are recorded in the vehpostype structure assigned

to the vehicle. (The vehpostype structure was discussed in Chapter IV.)

Upon initialization, all vehicles are set "alive" with a speed of zero. The control

of the vehicle is set to SAF, indicating that the vehicle will receive all of its updates from

the network. The y coordinate (elevation above sea level) for the vehicle is set to zero.

NPSNET will calculate the vehicles true elevation using a function called ground-level

63

during execution of the graphics loop. If the NPS NET function, isaircraft, determines that

the vehicle is an aircraft then the vehicle's elevation above the terrain is calculated using

the movetheaircraft functions.

getjanuslnltmess mssage)
char messagef]; P inucoming message*/

struct vehpostype ternpveh;
int iconnumber; /*the Janus icon number *
int janside; /*the side of the Janus vehicle/
int janvehnum; /*the vehicle unit number for Janus *

if(networkvehiclesin == FALSE) networkvehiciesin =TRUE;
r Increment the total number of vehicles read in for JANUS in NPSNET *1

jannumnvehs++;InoigMsaeFr
t

sscanf(message, "O/od0 /d %f %/f %/f O/od" esae ora
&janside, &janvehnum, &tempveh.pos[X],&tempveh.pos[Z],
&tempveh6direction, &iconnumber);

r Set the new vehicle's index in the lookup table number */Load JANUS to NPSNET
jan2npsveharrayliansidelljanvehnum] jannumvehs; 4- Cross Index Array

P* initialize the NPSNET vehtype values *
tempveh.vehtype =janicontable~iconnumberl;
te Tveh.janjtype =iconnumber;
tenpveh.viewdirection = 0.0;
te rreh.speed =0.0;
terTpveh.altve = 1;
te mpveh.pot]=00
temnpve h. boe h~ayv~oir O= OSAF;
temipveh.undriven-control = SAF;

if (canshoot(tempveh.vehtype)) tempveh.rounds =100;
else tempveh.rounds = 0;
r If the vehicle is an aircraft p lace it 100 meters above the ground '
if (isaircraft(tenipveh.vehlype))

tempveh.elev = 100;
else tempveh.elev = 0.0;
r Place the new vehicle in the vehicle array ~
veharray annumvehs] = tempveh;
veharrayjjannumvehsJ.vehnum = jannumvehs;

Figure 25: NPSNET Initialization Message Function

3. Vehicle Movement Updates

The JANUS(X) message ct set segmentfiostion is used to update the

movement of a vehicle on one of the two-dimensional screens. Therefore, in the body of

the JANUS(X) function to send this message, a message destined for NPSNET called

64

ctget-vehmovemess is embedded. This message includes the side and unit number of

the vehicle, its speed, orientation and current coordinates. Using the segmentnumber

provided by the JANUS(X) simulation, the speed and orientation (labeled vehview) of the

vehicle are retrieved from the global structures unitsdata.speed[side][vehicle-number] and

direct.dview[side][vehicle-number] respectively. Using the side and vehicle number as

indices, NPSNET can adjust the location, speed and direction of the vehicle in the three-

dimensional world.

4. Vehicle Shots

Just as with initialization of the vehicle set, JANUS(X) does not send any

message which specifically identifies that a vehicle fired a shot. Therefore, a function was

written to write this message to NPSNET, called ctsend_veh fire. This message sends the

force side and vehicle identification number for both the shooter and the intended target.

Upon receipt of this message, NPSNET will render a muzzle flash for the vehicle that fired.

Also, a red or blue line (depending on the force side of the firer) is drawn from the shooter

to the target. This line simulates the tracer action of a shot, while the color allows the

observer a quick reference to who fired it. The ct send veh fire message function is called

by the FORTRAN function drawfire. Every time the JANUS(X) sub-program, intact.for,

indicates that a vehicle shot its weapon it calls the drawfire function.

5. Artillery

Just as with vehicle shots, JANUS(X) does not send any message which

specifically identifies that artillery was fired. So again, a function was written to send an

artillery message to NPSNET. The name of this message is ct-sendarty, and it sends the

x and y coordinates where the artillery is currently landing. When this message is received

by NPSNET, an artillery explosion is rendered at the coordinates indicated. The artillery

message is initiated by the FORTRAN function drawarty. The JANUS(X) sub-program,

indfirfor, upon indication of an artillery shot, calls the drawarty function.

65

6. Vehicle Destruction

The death or destruction of a weapon system in the JANUS(X) combat model is

simulated by simply removing its icon from the two-dimensional screen. This removal is

executed using the message ctdelete_segment. To notify NPSNET of the destruction of a

vehicle, a message to NPSNET was embedded in the function ctdelete segment. This new

message sends the force side, vehicle identification number, grid coordinates and the final

orientation of the vehicle. NPSNET then simulates the destruction of a vehicle by halting

it and displaying an orange flame.

66

VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

1. Results

Two important results were achieved with this work. First, NPSNET was

validated as a flexible, three-dimensional simulation platform for integration with

traditional two-dimensional models. Second, it was shown that a traditional two-

dimensional combat model can be successfully displayed in three-dimensions. This

provides new life to systems that would otherwise rapidly become obsolete. What makes

the second result even more noteworthy is that the three-dimensional display is achieved at

a very low cost.

2. Applications

Currently, NPSNET provides the JANUS(A) combat modelers a method to

verify many of their algorithms. For instance, visibility testing algorithms can easily be

verified by moving a vehicle to a prescribed position on the battlefield and actually

analyzing its true field of view. Another use of NPSNET:JANUS-3D is to provide the war-

fighter operator immediate, realistic, visual feedback of an ongoing battle. This provides a

more realistic training tool for the operator, as opposed to merely reading the synthesized

data printed to the two-dimensional JANUS(A) screen. Also, NPSNET:JANUS-3D

provides the combat weapons system developer the ability to easily visualize a new weapon

system. The developer can develop appropriate tactics for the system, and test different

weapon system specifications such as size, shape and positioning of optical devices prior

to constructing any portion of the system. NPSNET: JANUS-3D is an excellent After-

Action Review (AAR) tool. With this tool, the instructor possesses the capability of riding

through the replay of an actual battle and providing salient observations of a vehicle's

explicit conduct during an operation -- stopping and starting the replay as required.

67

B. RECOMMENDATIONS

There are several features that, if added to NPSNET:JANUS-3D, would further

enhance the realism. First, there is a need to add temporary cultural objects such as mine

fields and abatis. Second, when operating the simulation in a networked/real-time mode,

the synchronization between the clock-speed of NPSNET and JANUS(A) is often

misaligned. Because of this lack of synchronization, vehicles appear to jump on the screen.

Therefore, a method to synchronize the clocks of the two models is desirable.

While this project proved that two-dimensional combat models can be displayed in

three-dimensions, it only allows the user to be an "observer" of the simulation. The next

logical step is to allow the observer to become an "operator" within the simulation. The

goal is to have the actions of the operator within the three-dimensional world, be used as

input to the two-dimensional model. This feature would allow war-fighters and combat

model analysts the capability to test new ideas quickly and conduct multiple "what if"

operations using the model.

The version of NPSNET used for this project used NPS networking formats,

however, there is a working version of NPSNET that utilizes SIMNET networking

protocols. A DIS version is also planned. When work is complete, the NPSNET:JANUS-

3D connection will be the prototype for connecting DoD combat models to the DoD

Defense Simulation Internet. Likewise, when "two-way" communication between the

three-dimensional simulation, NPSNET, and the two-dimensional combat model,

JANUS(A), is established, NPSNET will become the important interface between other

three-dimensional combat simulations, such as SIMNET, and the traditional, two-

dimensional combat models.

68

APPENDIX A: FILE TRANSLATION TECHNIQUES

A. FILE TRANSLATION FROM VAX TO IEEE

One of the first difficulties encountered when attempting to implement JANUS data

files in NPSNET was a serious compatibility problem between the two systems. NPSNET,

written in the C programming language, is run on the Silicon Graphics IRIS computers

which uses the UNIX operating system. JANUS(A), on the other hand, consists entirely of

code written in VAX- Il FORTRAN, a structured Digital Equipment Corporation (DEC)

extension of standard FORTRAN-77, and operates on the VAX family of computers

utilizing the VMS operating system [JANU 86].

Little-endian machines, such as the VAX, store words with the high-numbered byte as

the most significant, while big-endian machines, such as the IRIS, have the low-ordered

bytes of a woid as the most significant.

Bi-ndian Little-endian

Figure 26: Big-Endian vs. Little-Endian Architectures.

In addition to the byte ordering problems of the two different machines, there is also

a difference in the way floating point numbers are stored. The VAX architecture defines

four floating-point formats. The only one that the JANUS data files utilize is the four-byte

format. There also are two 8-byte formats, DFloating and GFloating, and one 16-byte

format, HFloating. As stated above, the VAX architecture is little-endian, which means

that bits <7:0> are stored in the first byte, bits <15:8> in the second, bits <23:16> in the

third, and <31:24> in the fourth.

69

31 15 6 0

Fraction S1 Exponent Fraction

Figure 27: VAX Architecture, Four-Byte, Floating Point Format.

This is a sign-magnitude representation, with the sign in bit <15>, an excess 128

binary exponent in bits < 14:7>, and a normalized 24-bit fraction in bits <6:0> and <31:16>.

An exponent value of 0 and a sign bit of 0 are taken to indicate true zero, while an exponent

value of 0 and a sign bit of I indicates a reserved operand (results in a reserved operand

fault when processed). Exponent values of 1 through 255 indicate true binary exponents of

-127 through +127 [VAX 90].

This known, the conversion from VAX to SGI for integers simply involves a reversal

in the order of the bytes. The conversion for floats is slightly more involved. First, Byte 1

is exchanged with Byte 2. Then, Byte 3 has one subtracted, and is exchanged with Byte 4

[BUHL 91]. An example of the C code to accomplish the conversion for floats follows:

70

This is function vax-real-to-sgi-float. It accepts a vax
formatted float, (as an unsigned long in hex), and returns
the float value in IEEE format.

/* prototype*/
float vax real to sgifloat(unsigned long);

float vaxrealto sgi_float(unsigned long vaxreal){
union VAXSTUFF{
unsigned char byte[4]; /* array of four bytes used for */
float ieeejfloat; /* this is the returned ieee format */
unsigned long vax_int; /* holds the vms input format */

union VAXSTUFF indata;
unsigned char temp;

indata.vaxint = vaxreal;

/* start swapping bytes */
if (indata.vaxint!= 00000000)(
temp = indata.byte[l] - 1;I

else{
/* a 0.0 is a 0.0 in any format */
temp = indata.byteIl];I

indata.byte~l] = indata.byte[0];
indata.bytetOl = temp;

temp = indata.byte[3];
indata.byte[3] = indata.byte[2];
indata.byte[2] = temp;

/* this is your answer */
return (indata.ieeefloat);}

Figure 28: Example Code for VAX to SGI Float Conversion

71

APPENDIX B: USER'S GUIDE

A. INTRODUCTION

This appendix provides a step-by-step description of the programs and procedures that

must be performed to create the three-dimensional NPSNET:JANUS-3D virtual world and

run the simulation in scripted and real-time modes. This appendix is divided into six

sections:

• VAX to UNIX file translation

* Generation of three-cdimensional terrain
"* Generation of a script

"• Operation of the two-dimensional replay simulation

* Operation of NPSNET with a script

• Operation of NPSNET and JANUS(X) in a networked, real-time mode

Within this document, all files and directories are written in italics, and all commands

that must be entered at the key board are written in bold.

B. VAX TO UNIX FILE TRANSLATION

The following section provides a description of the programs and procedures that

translate the JANUS binary, terrain, system, force, deploy, and post-processor files from a

VAX to Unix format. Before starting, the user must ensure that the files listed above, are

copied from the VAX/VMS system to a nine inch tape using the VMS copy command.

These files are then loaded into the Unix system using the Unix vmstp command. These

files must be copied in Iiis exact manner, because the translation programs were written to

accommodate the administrative bytes inserted by the VAX computer during the copy

process (i.e. the block and record delineation bytes.).

To begin the file translation process, copy the following JANUS(A) files from the nine

inch tape to the /n/gravy2/work/trac/janus/2dmapstufflfiles directory:

"* terain###.dat

"* system###.dat

72

"• force###.dat

"• dployM##.dat

"• ppmove##.dat

"° ppfirs###.dat

"* ppmins###.dat

"• pparty###.dat

"• ppkils###.dat

"* ppdtec###.dat

1. Translation of Terrain File

First, run the program readtrrn. It is located in the n/gravy2/work/trac/janus/

2dmapstuff/terrain directory. This program reads the JANUS(A) file, terain###.dat, from

the /n/gravy2lwork/tracljanus/2dmapstufflfiles directory, and converts the data contained

in the file to a Unix format. The converted data is written to the ASCII files ###.ele (terrain

elevation data), ###.riv (river location data), and ###.road (road location data), which are

located in the /nlgravy2/workltracljanusl2dmapstufflfiles directory. Additionally, the

header file, janus.h, is created and written to the /n/gravyl/work2lprattlsimnet/coll2/

headers directory. The janus.h file contains all of the static definitions for the terrain

database such as the size of the map, UTM coordinates for the lower-left hand comer of the

map and the resolution value for each grid square. All other programs -- to include

NPSNET -- use the definitions found injanus.h during execution.

Usage: readtrrn ###, where ### is the three number identifier from the

terrain file terrain###.dat.

2. Recompilation

Once the terrain file is translated and janus.h is written, all programs pertaining

to NPSNET:JANUS-3D must be recompiled. Therefore, the uset niiust go to the directories

listed in Figure 29 and type the following sequence of commands:

>rm *.0

> make

73

/nlgravy2/work/trac/janus/2dmapstufflfiles
/n/gravy2/work/trac/janus/2dmapstuff/force
/n/gravy2/workltrac/janusl2dmapstuff/system
ln/gravy2/workltracljanus/2dmapstuffldeploy
/nlgravy2/work/trac/janus/2dmapstuff/script
/n/gravy2/work/trac/janus/dirtlmakeground

Figure 29: List of Directories Requiring Recompilation

3. Translation of the System File

Next, the program readsysfilles is executed. It is located in the nlgravy2lwork/

trac/janus/2dmapstuff/system directory. This program reads the JANUS(A) file,

system###.dat from the /n/gravy2lworkltrac/janus/2dmapstufflfiles directory, converts the

data to Unix format and produces the ASCII files sysjorce.dat (JANUS(A) system and

weapons information), name.dat (weapon to system number references), and cloud.dat

(cloud ceiling, cloud coefficients, and wind speed). These files are also written to the n/

gravy2/work/tracljanus/2dmapstufflfiles directory.

Usage: readayof iles ###, where '###' are the three numbers associated

with the JANUS(A) system file, system###.dat.

4. Translation of the Force File

The program readforce is executed next. It is located in the n/gravy2/workitracl

janus/2dmapstufflforce directory. This program reads the JANUS(A) f'-. force###.dat

from the /nlgravy2/work/tracljanus/2dmapstufflfiles directory. It converts the data to Unix

format and produces three ASCII files called sysnames.dat (matches weapon to its system),

force.data (matches a vehicle to its side and system), and icontable.dat (matches a two-

dimensional icon to a vehicle). These files are written to the/ n/gravy2lwork/tracljanusl

2dnapstuffifiles directory.

Usage: readforce ###, where '###' are the three numbers associated with

the JANUS(A) force file, force###.dat.

74

5. Translation of the Deployment File

The program readdeploy is executed next. It is located in the n/gravy2/work/tracl

janus/2dmapstuffldeploy directory. This program reads the JANUS(A) file, dploy###.dat

from the /n/gravy2/work/trac/janus/2dmapstufflfiles directory. It converts the data to Unix

format and produces the ASCII file initunit.dat (initial locations of vehicles). This file is

written to the /n/gravy2/work/trac/janusl2dmapstufflfiles directory.

Usage: readdeploy ###, where'###' are the three numbers associated with

the JANUS(A) deployment file, dploy###.dat.

6. Translation of Post-processor Files

The program readppfiles.c is executed after the terrain, force, system and

deployment files are translated. It is located in the n/gravy2/work/trac/janus/2dmapstuff/

files directory. This program reads the JANUS(A) files, ppmove###.dat, ppfirs###.dat,

ppmins###.dat, pparty###.dat, ppkils###.dat, and ppdtec###.dat, which are located in the

/n/gravy2/work/trac/janus/2dmapstufflfiles directory. It converts the data to Unix format

and produces the ASCII files called ppmove.dat, ppfire.dat, ppmines.dat, pparty.dat,

ppkills.dat, and ppdtec.dat respectively. These files are written to the /n/gravy2/work/trac/

janus/2dmapstufifiles directory.

Usage: readppfiles ###, where'##' are the three numbers associated with

each JANUS(A) post-processor files.

C. TERRAIN GENERATION

All the programs used to generate the three-dimensional terrain are located in the /n/

gravy2/workitrac/janus/dirt/makeground directory. These programs must be generated in

the exact order specified below. Additionally, generation of the polygonized terrain is both

time consuming and memory consuming. Most files can be deleted once all of the terrain

is generated. The names of the files that must remain are listed at the end of this section.

75

Before executing any programs, erase everything in the directories listed in Figure 30

using the Unix, ra * command.

/n/gravy2/workltrac/janus/dirt/coverfiles
/n/gravy2/work/trac/janus/dirt/textcoverfiles
/nlgravy2fworkltracljanus/dirt/elevfiles
/n/gravy2/workltracljanus/dirt/textelevfiles
/n/gravy2/workltrac/janus/dirt/objectfiles
/n/gravy2/work/trac/janus/dirt/textobjectfiles
ln/gravy2/work/trac/janus/dirt/quadfiles
/n/gravy2lwork/trac/janus/dirt/textquadfiles
/n/gravy2/workltrac/janus/dirt/roadriverfiles

Figure 30: Terrain Data Directories

Once these directories are clear then execute the following programs in the order

listed:

(1) genbinaryelev: This program reads the f'Me ###.ele found in the /n/

gravy2/workltrac/janus/2dmapstufflfiles directory, and creates the binary elevation file

named elev.bin.dat in the /n/gravy2/work/trac/janus/dirt/elevfiles directory.

Usage: genbinaryelev ###, where'###' are the three numbers

associated with the file, ###.ele.

(2) make tri-mesh: This program reads the file ###.ele found in the In/

gravy2lwork/trac/janus/2dmapstufflfiles directory, and calculates the point normals for

each elevation in the elevation file. It then writes this information to a binary file named

elev.mesh.dat in the /n/gravy2/work/tracljanus/dirt/elevfiles directory.

Usage: maketrimesh ###, where'###' are the three numbers

associated with the file, ###.ele.

(3) convelev2block bin: This program reads the file ###.ele found in the /

n/gravy2/work/tracfjanus/2dmapstufflfiles directory. Each elevation is then rewritten, in

binary, to a file in the /n/gravy2lwork/trac/janus/dirt/elevfiles directory. The file that it is

written to corresponds to the quadnode in which it is located. The generic name for these

76

new elevation files is elevXXXXZZZZ.dat, where XXXX and ZZZZ are the quadnode

indices for the file.

Usage: convelev2blockbin

(4) janus2nps: This program reads the file ###.ele found in the In/gravy2/

workltracfjanus/2dnapstuff/files directory. This data is then converted to polygonized

terrain data and converted to David R. Pratt (NPSDRP) data format [PRAT 92a]. The new

data is then written in ASCII, to the file cover.dat, found in the /n/gravy2/work/trac/janus/

dirtltextcoverfiles directory.

Usage: janus2nps ###, where '###' are the three numbers

associated with each file, ###.ele.

(5) reverseroads: This program reads the files ###.road and ###.riv found in

the /n/gravy2/work/trac/janusl2dmapstufflfiles directory. These files contain the

coordinates for each road and river checkpoint. These coordinates are converted to the

NPSNET coordinate system and rewritten to the ASCII files road.dat and riv.dat,

respectively. Both of these files are located in the directory, /n/gravy2/work/trac/janus/dirt/

roadrivfiles.

Usage: reverseroads ###, where '###' are the three numbers

associated with the files, ###.riv and ###.road.

(6) makeroadfile: This program reads the files road.dat and riv.dat, found in

the /n/gravy2lwork/trac/janus/dirt/roadriverfiles directory, and creates two point line

segments with the data. This new information is then written to the ASCII file roads.dat

found in the /n/gravy2/workltrac/janus/dirt/roadrivfiles directory.

Usage: makeroadfile

(7) makeroads: This program reads the file roads.dat found in the /n/gravy2/

work/tracljanus/dirt/roadriverfiles directory and converts the data into DRP polygonized

terrain format. This new information is then written to the ASCII file roadcover.dat found

in the /n/gravy2/work/trac/janus/dirtiroadrivfiles directory.

Usage: makeroads

77

(8) maketrees: This program reads the file, ###.ele, found in the /n/gravy2/

workltrac/janus/2dmapstuff/files directory and the file roadcover.dat found in the In/

gravy2/work/trac/janusldirt/roadrivfiles directory. It then generates the locations for tree

and city canopies, and stores this information in the files treeblock.dat and cityblock.dat

respectively. These two files are found in the /n/gravy2/workltrac/janus/dirt/textobjectfiles

directory. The program also calculates the locations for individual trees and buildings and

sorts them by their height/density factors into the files cityl.dat through city7.dat and

treel.dat through tree7.dat. These files are also written to the /n/gravy2/work/trac/janus/

dirtftextobjectfiles directory.

Usage: maketrees

(9) genblockcov: This program reads the file, cover.dat, from the directory,

/n/gravy2/work/trac/janus/dirt/tectcoverfiles, and the file, roadcover.dat, from the

directory, /n/gravy2/work/trac/janus/dirt/roadrivfiles. The elevation data from these files is

rewritten, in ASCII, to a file in the ln/gravy2lworkltracljanus/dirt/textcoverfiles directory.

The generic name for these new elevation files is coverXXXXZZZZtext.dat, where XXXX

and ZZZZ are the quadnode indices for the file. The file name, that the data is written to,

corresponds to the quadnode in which it is located.

Usage: genblockcov

(10) conv_b!_,ckcov2bin: This program uses, as input, the files that were

produced by the program genblockcov. The generic name for these files are

coverXXXXZZZZtext.dat. They are found in the /n/gravy2/work/tracljanus/dirt/

textcoverfiles directory. The program rewrites the files to binary formatted files, found in

the /n/gravy2/work/trac/janus/dirt/coverfiles directory. The new generic name for the files

is coverXXXXZZZZbin.dat, where XXXX and ZZZZ are the quadnode indices for the file.

Usage: conv_blockcov2bin

(11) genquadcov: This program reads the files, coverXXXXZZZZbin.dat,

from the ln/gravy2/workltrac/janus/dirtlcoverfiles directory. In this program, the polygons

for each resolution level (high, medium-high, medium-low and low) are created, then each

file is converted into a quadtree format. Each file is then written to files with the generic

78

name of coverXXXXZZZZtextquad.dat found in the /n/gravy2/work/trac/janus/dirt/

textquadfiles directory.

Usage: genquadcov

(12) convquadcov2bin: This program uses, as input, the files that were

produced by the program genquadcov. The generic name for these files are

coverXXXXZZZZtextquad.dat. These files are found in the /n/gravy2/work/trac/janus/dirt!

textquadfiles directory. These files are rewritten to binary files found in the /n/gravy2lwork/

trac/janus/dirtlquadfiles directory. The new generic name for the files is

coverXXXXZZZZbinquad.dat, where XXXX and ZZZZ are the quadnode indices for the

file.

Usage: conv._quadcov2bin

(13) genblockobj: This program reads the files treeblock.dat, city block.dat,

treel.dat through tree7.dat, and cityl.dat through city7.dat, all from the /n/gravy2/work/

trac/janus/dirt/textobject directory. The data from these files is rewritten to ASCII files in

the /n/gravy2/work/trac/janus/dirt/textobjecOfiles directory. The file that the data is written

to, corresponds to the quadnode in which it is located. The generic name for these new

elevation files is objectXXXXZZZZtext.dat, where XXXX and ZZZZ are the quadnode

indices for the file.

Usage: genblockobj

(14) conv_blockobjjto-bin: This program uses, as input, the files that were

produced by the program genblockobj. The generic name for these files are

objectXXXXZZZZtext.dat. These files are found in the /n/gravy2/work/trac/janus/dirt/

textobjectflles directory. The program rewrites these files to binary files and places them in

the Inlgravy2/worlotrac/janus/dirt/objectfiles directory. The new generic name for the files

is objectXXXXZZZZbin.dat, where XXXX and ZZZZ are the quadnode indices for the file.

Usage: conv_blockobj_tobin

Once the aboveý programs are completed, all files may be erased except the following:

* All files in the /n/gravy2/work/trac/janus/dirt/quadfiles directory.

79

"• All files in the In/gravy2/work/trac/janus/dirt/objectfiles directory.

"• The file elev.bin.dat in the /n/gravy2/work/trac/janus/dirt/elevfiles directory
"• The file elev.mesh.dat in the /n/gravy2/work/trac/janus/dirt/elevfiles

directory

At this point, the data for the t-mesh and polygonized terrain is created. The user can

now write the script, or run NPSNET in the real-time mode.

D. SCRIPT GENERATION

To generate a three-dimensional script, the following files must be present in the n/

gravy2/work/trac/janus/2dmapstufflfiles directory:

"* ppmove.dat

"• ppfires.dat

"* ppkills.dat

"* pparty.dat

"• ppmines.dat

Before writing the script, the user must delete all files from the /n/gravy2/work/trac/

janus/2dmapstufffiles/script_data directory. These files must be removed because many of

the script routines 'append' information to files, rather than 'create' new files. These files

can be erased by moving to the /n/gravy2/work/trac/janus/2dmapstuff/files/script data

directory and typing rm * at the prompt.

Once the directory is empty, the script is written by executing the two programs listed

below:

(1) makeinitialposfile: This program is located in the /nlgravy2/work/tracljanus/

dirt/makeground directory. As input, it uses the files initunit.dat and sysnames.dat, both

located in the ln/gravy2/work/trac/janus/2dmapstuff/files directory. First, this program

creates the file janusvehiclepos.dat and places it in the fn/gravy2/work/trac/janusfdirtl

textobjectfles directory. This file contains the initial positions and view directions for each

vehicle used in the script. Also the program creates a separate file for each vehicle in the /

n/gravy2/work/trac/janus/2dmapstufflfiles/script data directory. The generic name for

these files is newveh####.dat, where the first # represents the integer value for the side of

80

the vehicle (one = blue, two = red), while the next three •#'s represent the vehicle's

identification number.

Usage: makeinitialposfile

(2) writescript: This program is located in the /n/gravy2/work/trac/janus/

2dmapstuff/script directory. It uses the files ppmove.dat, ppfires.dat, pparty.dat,

ppkills.dat, and ppmines.dat, as discussed above. This program writes a series of files

named veh####.dat, and realnewveh.dat to the /n/gravy2/workltracljanus/2dmapstufflfiles/

script-data directory. These files are only used by this program and can be erased upon the

conclusion of the program's execution. This program ultimately produces the file

janus_script.dat, which is also written to the In/gravy2fwork/trac/janus/2dmapstufflfiles/

script data directory. This file contains the script that is used by NPSNET:

Usage: writescript

E. Operation of the Two-Dimensional REPLAY Program

The name of the program used to display the converted two-dimensional terrain,

vegetation, and cultural features is 'REPLAY'. In addition to displaying the map, this

program also tests the converted initialization and post-processor files by means of a

scripting capability. 'REPLAY' is found in the /n/gravy2/work/trac/janus/2dmapstuff/

terrain directory.

1. Initialization and Start-Up Procedures

Before starting the program, all of the necessary files must be converted, and

stored in the fn/gravy2/workltrac/janus/2dmapstufflfiles directory. These files include the

terrain, initialization, and post-processor files. For a detailed description of the generation,

names, and locations of these files (see "VAX TO UNIX FILE TRANSLATION" earlier

in this Appendix).

To start the program, simply type replay W##. '###' is the three digit number

corresponding to the two-dimensional digitized terrain map being used in the scenario.

81

2. Program Manipulation

The two major functions of the 'REPLAY' program are (1) the terrain feature

display capability, and (2) the tactical scenario playback capability.

After starting the program, the first screen to appear is the grey-scale map as

shown in Figure 1. As illustrated in Figure 31, clicking and holding the right mouse button,

displays the Main Menu. To render the different terrain features, simply slide the cursor

into the Terrain Features Menu, and select the desired feature. An example, after

selecting cities, vegetation, roads, and rivers, is shown in Figure 2. By selecting an item

from the menu once more, each terrain feature is removed from the display.

MAIN MENU TERRAIN FEATURES

Terrain Features s- Show Cities
Replay Events Show Vegetation
Exit Show Roads

Show Rivers
Show Trafficability
Show Micro Roughness
Show River Grids
Show Obstacles
Show Grid Blow Down
Show Grid Fires
Show Chemical
Show Smoke
Show High Explosives

Figure 31: REPLAY Main Menu and Terrain Feature Sub-Menu

The second function of the 'REPLAY' program is the playback capability. To

start the script, click on the Replay Events item of the Main Menu. After placing the Blue

and Red force vehicles and all minefields in their initial positions, the script of the battle is

immediately started.

82

An example of the playback program is shown in Figure 3. Movement events are

shown by moving the two-dimensional icon to its next position. Direct fire events are

drawn with straight lines -- blue lines represent friendly fire and red lines represent enemy

fire. Indirect fire events are depicted as circles. The edges of the circles are colored

according to the side (red or blue), and the interior of the circle is painted black for high

explosive or white for smoke. Smoke rounds remain on the map until their determined

dissipation time. Destroyed vehicles are changed to a green color, and remain on the map

at that position.

Currently, the speed in which the script executes is equal to the recorded game

time. Since some of the scenarios are over two hours in length, this requires the user to

watch the entire battle, when the last 30 minutes may be the only interesting part. For future

work, a nice feature to include would be the ability to speed up the game clock, in order to

move quickly to a point of interest. A menu item has been included for this, which will

increase the clock by a certain time factor (see Figure 32).

REPLAY EVENTS SPEEDS

Change Speeds P-- IX
Reset 2X
Exit Replay 4X
Exit Program 8X

loX
20X
50X

Figure 32: Replay Events Menu and Clock Speed Sub-Menu

After Replay Events is executed, the script can be reset to the beginning of the

battle by selecting the Reset item. Likewise, the user can exit the scripting tool and return

83

to the Main Menu by selecting Exit Replay, or can exit the entire program by selecting

Exit Program as shown in Figure 32.

F. Operation of NPSNET: JANUS-3D

There are currently two different methods of running NPSNET: JANUS-3D. The first

is a Script Mode, and the second is a Real-Time Mode, which runs concurrently with

JANUS(X) over a network. Different compilations are required for JANUS-3D, depending

on which mode is chosen, and what terrain database is used. This section discusses the steps

necessary to compile the different executable programs, followed by a detailed discussion

of the operation of NPSNET: JANUS-3D in the two different modes.

1. NPSNET: JANUS-3D Compilation

Currently, NPSNET can be compiled in three different modes by using the 'C'

Programming Language's #ifdef command during compilation. The three different

variables presently used in the #define command are:

"• NTC -- terrain and object data from the National Training Center
"• HTL -- terrain and object data from Fort Hunter Liggett, CA

"* JANUS -- terrain and object data generated from any JANUS(A) scenario

The option chosen decides which variable must be defined in the file In/gravyll

work2/pratt/simnet/sdis/coll2/SYSTYPE.h. Only the 'JANUS' option will be discussed,

since the NTC and HTL versions of NSPNET are never used when running JANUS-3D.

Besides ensuring that the SYSTYPE.h file is properly defined, there are two additional files

that need adjusting in order to compile the proper version of JANUS-3D -- janus.h and

files.h. Both of these files are found in the /n/gravyl/work2/pratt/simnet/sdis/coll2/headers

directory.

As discussed earlier, janus.h is created by the program readtrrn. The file janus.h

contains the static definitions that pertain to a particular JANUS(A) database. When a new

JANUS(A) database is translated for use with NPSNET, the janus.h file that is created for

it is often stored under a temporary name for future use. The temporary name includes the

84

word 'janus', followed by a suffix (e.g. janusjfulda). The suffix is the name of the map

used in the terrain database. Because thejanus.h file is crucial in the creation of the proper

three-dimensional terrain for NPS NET, it is important that the appropriate version is named

"janus.h" during the compilation process.

The second file, files.h, contains all of the #defines for every file that is written

to or read from il' NPSNET. For JANUS-3D, several options are available in files.h, of

which currently there are four: (1) Hunter Liggett Scripted Version, (2) Fulda, Germany

Scripted Version, (3) Fulda, Germany Real-Time Version, and (4) 73 Easting Scripted

Version. The #defines for these different options are separately grouped, with only one

being readable (uncommented) at a time.

After SYSTYPE.h, janus.h and files.h are properly formatted, NPSNET can then

be compiled and run. The following discussions of the operation of NPSNET: JANUS-3D

are based on the assumption that the user is familiar with the operation of NPSNET, thus

only the JANUS-3D peculiarities are discussed.

2. Operation of NPSNET: JANUS-3D in Script Mode

Assuming the proper version of the program was compiled, and the files are in

the proper location, start JANUS-3D in the scripted mode by typing npsnet in the n/

gravy I/work2/pratt/simnet/sdis/coll2 directory (If operating on an SGI, Indigo-Elan type

npsnet t.). When initialization is complete, and NPSNET is started, bring up the two-

dimensional map by selecting the 2d Map Window item of the Main Menu as shown in

Figure 33. This will display the entire JANUS(A) grey-scale map, in the upper-right hand

side of the screen, with the two-dimensional iccn symbols in their initial positions. The

viewer's location will be in the observer-controller vehicle. Before the scripting action is

started, the user can place himself inside any vehicle by picking the appropriate icon in the

2d map window. Once inside, the vehicle's position and viewing angle can be changed with

the Space Ball. Later, when the script is started, each of the vehicles that were moved will

immediately return to there initial location and orientation.

85

To begin the script, select the Play Tracks item from the sub-menu, Script

Menu as depicted in Figure 33. Like the two-dimensional REPLAY program, the speed of

the script rurs at game time, and cannot be increased. However, once started, the script can

be reset by selecting the Reset Tracks item in the Script Menu as shown in Figure 33.

While the script is in process, the viewer can take semi-control of any vehicle with the

Space Ball. This control is limited, because the script file takes precedence over the user's

inputs. In other words, the vehicle will jump back to its proper location and orientation

every timne the script tells it to.

NPSNET MAIN MENU

View to the Tank
Mesh Mode On
Checkerboard On
Texture Off
Networking On
Reset Networked Vehicles
Objects On
Hide Other Vehicles
Show Veh Dashboard
Hide the Info Panel

Script Menu up. SCRIPT MENU
Convoy Menu g-
Fog Menu Record and Play
2d Map Window . Play Tracks

Record Tracks
Screen Snapshot Stop Tracks
Help p. Reset Tracks
Exit

Figure 33: NPSNET Main Menu and Script Sub-Menu

86

3. Operation of NPSNET: JANUS-3D in Real-Time Mode

To run JANUS-3D in a real-time mode, two different programs must be started;

(1) NPSNET, in the network mode, and (2) JANUS(X), from an IRIS Workstation.

NPSNET must be started, first, by typing npsnet. Once NPSNET is running, the

networking mode must be turned on by selecting the Networking On item from the Main

Menu as illustrated in Figure 33. After NPSNET is initialized and in the Networking On

or 'listening mode', JANUS(X) can be started from another IRIS Workstation.

Before beginning JANUS(X), the user must be logged in on the workstation as

TRAC. This is because the .Iogin and .cshrc files in the TPAC directory contain aliases and

path designations necessary to run JANUS(X).

To start, type the command makejanwin. The program, makejanwin, is a shell

script, located in the /n/gravy2/work/trac/bin directory and is listed in Figure 34.

wsh -f Screen14 -m 80,80 -s 60,14 -p 700,260 -n "RED SIDE"

wsh -f Screen 14 -m 80,80 -s 60,14 -p 700,10 -n "BLUE SIDE"

xwsh -fn Screen 14 -max 120x 120 -geom 92x32+14+600 -title "JANUS DRIVER" -e riogin libra

Figure 34: Makejanwin Shell Script

Makejanwin displays three separate windows at the bottom of the screen. The

JANUS DRIVER screen at the lower-left corner is the main console window, from which

JANUS(X) is started. The main console window is remotely logged into the libra file

server, because JANUS(X) requires the FORTRAN run-time libraries that NPS stores on

this file server. The other two windows are used to type the commands necessary to display

the Red and Blue side screens, and are titled RED SIDE and BLUE SIDE, respectively.

In the RED SIDE window, type red. This will display the window for the red

side, which can be positioned anywhere on the screen. Typing blue in the BLUE SIDE

window, will duplicate the actions taken for the red window. These commands, red and

87

blue, are aliases which are defined in the .login file. The aliased commands, described in

Figure 35, set each of the windows to a 'listening mode', assign a port number (to uniquely

identify the window for packet sending), and begin the program xtest, which captures the

message packets and calls the appropriate graphic functions.

alias blue 'setenv JANUSLISTEN 20002;cd -trac/janus/sun;xtest -x font.0'
alias red 'setenv JANUSLISTEN 20001;cd ~trac/janus/sun;xtest -x font.0'

Figure 35: Exampie of Aliased Commands for JANUS(X) Initialization

The next step is to begin the JANUS(X) model in the JANUS DRIVER window.

Type xterm at the TERM = (sun) prompt. Then, depending which IRIS Workstation is

being used, type in the command runjan irisname, with irisname corresponding to the

workstation. For example, if the model is being displayed on gravyl, type runjangravyl.

These commands are also aliases which are defined in the 'trac' account's .Iogin file. The

aliased commands, as shown in Figure 36, produce two sending stations (one blue and one

red), with the same unique port numbers as the listening windows. They also start the

program, janus.

alias runjangravy I 'setenv JANUSTERMINAL_ I gravy 1:20001;

setenv JANUSTERMINAL_2 gravy1:20002;
cd -trac/janus/sun/janus/Programs;janus'

Figure 36: Aliased Command to Run JANUS on Gravy 1 Terminal

After typing the runjan command, the JANUS DRIVER window will prompt

the user for the Scenario Number and the Run Number of the specific JANUS(X) scenario.

After entering the appropriate numbers, three JANUS(X) initialization screens will be

presented in succession. Type in the necessary data into each screen followed by

88

<ENTER>. (NOTE: The <RETURN> key does not suffice, <ENTER> must be used).

JANUS(X) will now be running in the two windows marked BLUE SIDE and RED SIDE.

Once the two screens are initialized, the JANUS(X) grey-scale map, in the upper-

right hand side of the NPSNET screen, will render the two-dimensional icon symbols in

their initial positions. As in the scripted mode, these vehicles can be entered by picking the

appropriate icon from the 2d map. Once the real-time link is started, any altered vehicles

are returned to their initial positions and orientations.

To start the real-time model, select the EXIT item from both the BLUE SIDE and

RED SIDE windows as depicted in Figure 37. The JANUS DRIVER window will prompt

the user to press <RETURN>. After pressing <RETURN>, the real-time version of

JANUS-3D is started. While the real-time battle is in process, the viewer can take semi-

control of any vehicle with the Space Ball, but loses control whenever a vehicle receives a

message from the network.

To end the real-time simulation, select the ADMIN item from both the BLUE

SIDE and RED SIDE windows as shown in Figure 37. The JANUS DRIVER window will

display the Admin Menu. Selecting the EJ item (End Janus) will stop JANUS(X). When

JANUS(X) is ended, NPSNET will continue updating vehicle positions according to their

last speed and location. To clear the NPSNET screen, select the Reset Networked Vehicles

item from the NPSNET Main Menu. Then, if needed, the JANUS(X) model can be

restarted without having to restart NPSNET.

89

..... - - --- -- -- -- - - - -

Figure 37: Example of the RED SIDE JANUS(X) Screen

90

LIST OF REFERENCES

[BUHL 911 Buhle, E. L., "Computing in a Heterogeneous Environment", VAX-
Profession, pp. 11-13, August 1991.

[CLIP 91] Software Technology Branch, Lyndon B. Johnson Space Center, CUPS
Reference Manual, Version 5.0" JSC-22948, Jan 1991.

[GIAR 89] Giarratano, Joseph C., and Riley, Gary, Expert Systems, Principles and
Programming, PWS-KENT, Publishing Company, 1989.

[GIAR 91] Giarratano, Joseph C., CUPS User's Guide, Information Systems
Directorate, Software Technology Branch, Lyndon B. Johnson Space
Center, Jan 1991.

[GUYT 92] Guyton, Jim, JANUS(A)for Sun/Unix, Rand Corporation, Los Angeles, CA,
April 1992.

[HARB 91] Harbison, Samuel P. and Steele, Guy L. Jr., C, A Reference Manual, 3rd
Edition, Prentice Hall, 1991.

[JANU 86] U.S. Army TRADOC Analysis Command, WSMR, JANUS(T)
Documentation Manual, June 1986.

[JANU 91] U.S. Army TRADOC Analysis Command, WSMR, JANUS(A) Version 2.0
Information Letter, March 199 1.

[JANU 92] U.S. Army TRADOC Analysis Command, Leavenworth, Janus Army,
Single Model Serving All Domains, Leavenworth, KS, 1992.

[KANA 91] Kanayama, Yutaka, "Advanced Robotics Course Notes", Naval
Postgraduate School, Monterey, CA, Fall 1991.

[MACK 91] Macky, Randall L., NPSNET: Hierarchical Data Structures for Real-Time
Three-Dimensional Visual Simulations, Master's Thesis, Naval Postgraduate
School, Monterey, California, September 1991.

[PRAT 901 Pratt, David R., "showelev.c", computer program, 1991.

[PRAT 92] Pratt, David R., Zyda, Michael J., Mackey, Randall L., and Falby, John S.,
"NPSNET: A Networked Vehicle Simulation with Hierarchical Data
Structures", Naval Postgraduate School, 1992.

[PRAT 92a] Pratt, David R. and Zyda, Michael J., "NPS Terrain Database Format",
technical note generated by the Graphics and Video Laboratory for DARPA/
ANSTO and USATEC, 5 March 1992.

91

[SGI 91] Silicon Graphics Inc., IRIS WorkSpace Integration Guide, August 1991.

[SUN 91] Sun Microsystems INC, Sun FORTRAN User's Guide, February 1991.

[VAX 90] VAX MACRO, Instruction Set Reference Manual (AA-LA89A-TE), pp. 8-3.
1990.

[ZYDA 91] Zyda, Michael J. and Pratt, David R., "NPSNET: A 3D Visual Simulator for
Virtual World Exploration and Experimentation", 1991 Society for
Information Display International Symposium Digest of Technical Papers,
Volume XXII, May 1991, pp 361-364.

[ZYDA 91a] Zyda, M. J., Wilson, K. P., Pratt, D. R. and Monahan, J. G., "NPSOFF: An
Object Description Language for Supporting Virtual World Construction",
October 1991.

[ZYDA 92] Zyda, Michael J, Pratt David R, Monahan Gregory, and Wilson, Kalin P;
"NPSNET: Constructing a 3D Virtual World", Symposium on 3D Graphics,
'92 Proceedings, April 1992, pp 147-156.

92

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Dr. Michael J. Zyda 6
Code CS/Zk
Naval Postgraduate School
Monterey, CA 93943-5000

4. David R. Pratt 6
Code CS/Pr
Naval Postgraduate School
Monterey, CA 93943-5000

5. CPT Jon C. Walter
P. O. Box 246
Hoxie, AR 72433

6. CPT Patrick T. Warren
5000 Alabama St. #36
El Paso, TX 79930

7. Director 6
U.S. Army, TRADOC Analysis Command-Monterey
Naval Postgraduate School
Monterey, CA 93943

8. Director
U.S. Army TRADOC Analysis Command-WSMR
ATTIN: ATRC-WE
White Sands Missle Range, NM 88602-5502

9. Dr. Ralph M. Toms
Conflict Simulation Laboratory
Lawrence Livermore National Laboratory
University of Califonia
Livermore, CA 94551

10. W.M. Christenson
Strategy, Forces, and Resources Division
Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311-1772

93

